Abstract

By regarding the total ambient radiation falling on a greybody as an equivalent radiation of a blackbody at temperature TB and by using two standard reference plates, we are able to measure accurately the ambient radiation. In addition to the ambient radiation, there are two factors still affecting the self-radiation of a greybody, i.e., the emissivity ɛ and the truth temperature T. We point out theoretically that the emissivity could be determined by changing the ambient radiation. In this paper two simple methods are proposed for measuring the emissivity and good results are obtained for a variety of greybodies. These methods are not only practical in the laboratory but also in the field. The experimental results agree well with the data published by other investigators. After TB and ɛ are measured, the truth temperature T of the greybody can be obtained. Based on the theory presented here, we designed and produced a new infrared thermometer which can directly read out the truth temperature.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Zimmerman, Proc. Soc. Photo-Opt. Instrum. Eng. 226, 110 (1980).
  2. R. D. Hudson, Infrared System Engineering (Wiley, New York, 1969).
  3. F. E. Nicodemus, “Directional Reflectance and Emissivity of an Opaque Surface,” Appl. Opt. 4, 767 (1965).
    [CrossRef]
  4. J. L. Gardner, T. P. Jones, “Multiwavelength Radiation Pyrometry where Reflectance is Measured to Estimate Emissivity,” J. Phys. E. 13, 306 (1980).
    [CrossRef]
  5. C. Martin, P. Fauchais, “Mesure par Thermographic Infranouge de l’Emissivité de Matériaux bons Conducteurs de la Chaleur. Influence de l’Etat de Surface, de l’Oxydation et de la Température,” Rev. Phys. Appl. 15, 1469 (1980).
    [CrossRef]
  6. B. E. Emilsson, presented at Second International Conference on Low Light and Thermal Imaging, 173, 5 (1980).
  7. K. J. H. Buettner, C. D. Kern, “The Determination of Infrared Emissivities of Terrestrial Surfaces,” J. Geophys. Res. 70, 1329 (1965).
    [CrossRef]
  8. M. Griggs, J. Geophys. Res. 73, 7545 (1968).
    [CrossRef]
  9. J. A. Davies et al., “Field Determination of Surface Emissivity and Temperature for Lake Ontario,” J. Appl. Meteorol. 10, 811 (1971).
    [CrossRef]
  10. Y. W. Zhang, “Modification of the Sensitivity Equations of Various Infrared Systems,” Acta Phys. Sin. 29, 813 (1980).
  11. Y. W. Zhang, Infrared Optical Engineering (Shanghai Scientific Press, 1983), chap. 8.
  12. W. L. Wolfe, G. J. Zissis, Eds., The Infrared Handbook (Environmental Research Institute of Michigan, Ann Arbor, 1978).
  13. L. Z. Kpukcyhob, Cπpaboyhuk πo Ochobam Nhϕpakpachouˇ Texhuku, Mockba, ≪ Cobetckoe paguo ≫, 1978.
  14. F. Beeke et al.., in Proceedings, Thirteenth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1979).
  15. I. J. Barton, “Dual Channel Satellite Measurements of Sea Surface Temperature,” Q. J. R. Meteorol. Soc. 109, 365 (1983).
    [CrossRef]
  16. A. Chedin et al., “A Single Channel Double-Viewing Angle Method for Sea Surface Temperature Determination from Coincident METEOSAT and TIROS-N Radiometric Measurements,” J. Appl. Meteorol. 21, 613 (1982).
    [CrossRef]
  17. J. L. Cogan, “Remote Sensing of Surface and Near Surface Temperature from Remotely Piloted Aircraft,” Appl. Opt. 24, 1030 (1985).
    [CrossRef] [PubMed]

1985 (1)

1983 (1)

I. J. Barton, “Dual Channel Satellite Measurements of Sea Surface Temperature,” Q. J. R. Meteorol. Soc. 109, 365 (1983).
[CrossRef]

1982 (1)

A. Chedin et al., “A Single Channel Double-Viewing Angle Method for Sea Surface Temperature Determination from Coincident METEOSAT and TIROS-N Radiometric Measurements,” J. Appl. Meteorol. 21, 613 (1982).
[CrossRef]

1980 (4)

J. Zimmerman, Proc. Soc. Photo-Opt. Instrum. Eng. 226, 110 (1980).

J. L. Gardner, T. P. Jones, “Multiwavelength Radiation Pyrometry where Reflectance is Measured to Estimate Emissivity,” J. Phys. E. 13, 306 (1980).
[CrossRef]

C. Martin, P. Fauchais, “Mesure par Thermographic Infranouge de l’Emissivité de Matériaux bons Conducteurs de la Chaleur. Influence de l’Etat de Surface, de l’Oxydation et de la Température,” Rev. Phys. Appl. 15, 1469 (1980).
[CrossRef]

Y. W. Zhang, “Modification of the Sensitivity Equations of Various Infrared Systems,” Acta Phys. Sin. 29, 813 (1980).

1971 (1)

J. A. Davies et al., “Field Determination of Surface Emissivity and Temperature for Lake Ontario,” J. Appl. Meteorol. 10, 811 (1971).
[CrossRef]

1968 (1)

M. Griggs, J. Geophys. Res. 73, 7545 (1968).
[CrossRef]

1965 (2)

K. J. H. Buettner, C. D. Kern, “The Determination of Infrared Emissivities of Terrestrial Surfaces,” J. Geophys. Res. 70, 1329 (1965).
[CrossRef]

F. E. Nicodemus, “Directional Reflectance and Emissivity of an Opaque Surface,” Appl. Opt. 4, 767 (1965).
[CrossRef]

Barton, I. J.

I. J. Barton, “Dual Channel Satellite Measurements of Sea Surface Temperature,” Q. J. R. Meteorol. Soc. 109, 365 (1983).
[CrossRef]

Beeke, F.

F. Beeke et al.., in Proceedings, Thirteenth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1979).

Buettner, K. J. H.

K. J. H. Buettner, C. D. Kern, “The Determination of Infrared Emissivities of Terrestrial Surfaces,” J. Geophys. Res. 70, 1329 (1965).
[CrossRef]

Chedin, A.

A. Chedin et al., “A Single Channel Double-Viewing Angle Method for Sea Surface Temperature Determination from Coincident METEOSAT and TIROS-N Radiometric Measurements,” J. Appl. Meteorol. 21, 613 (1982).
[CrossRef]

Cogan, J. L.

Davies, J. A.

J. A. Davies et al., “Field Determination of Surface Emissivity and Temperature for Lake Ontario,” J. Appl. Meteorol. 10, 811 (1971).
[CrossRef]

Emilsson, B. E.

B. E. Emilsson, presented at Second International Conference on Low Light and Thermal Imaging, 173, 5 (1980).

Fauchais, P.

C. Martin, P. Fauchais, “Mesure par Thermographic Infranouge de l’Emissivité de Matériaux bons Conducteurs de la Chaleur. Influence de l’Etat de Surface, de l’Oxydation et de la Température,” Rev. Phys. Appl. 15, 1469 (1980).
[CrossRef]

Gardner, J. L.

J. L. Gardner, T. P. Jones, “Multiwavelength Radiation Pyrometry where Reflectance is Measured to Estimate Emissivity,” J. Phys. E. 13, 306 (1980).
[CrossRef]

Griggs, M.

M. Griggs, J. Geophys. Res. 73, 7545 (1968).
[CrossRef]

Hudson, R. D.

R. D. Hudson, Infrared System Engineering (Wiley, New York, 1969).

Jones, T. P.

J. L. Gardner, T. P. Jones, “Multiwavelength Radiation Pyrometry where Reflectance is Measured to Estimate Emissivity,” J. Phys. E. 13, 306 (1980).
[CrossRef]

Kern, C. D.

K. J. H. Buettner, C. D. Kern, “The Determination of Infrared Emissivities of Terrestrial Surfaces,” J. Geophys. Res. 70, 1329 (1965).
[CrossRef]

Kpukcyhob, L. Z.

L. Z. Kpukcyhob, Cπpaboyhuk πo Ochobam Nhϕpakpachouˇ Texhuku, Mockba, ≪ Cobetckoe paguo ≫, 1978.

Martin, C.

C. Martin, P. Fauchais, “Mesure par Thermographic Infranouge de l’Emissivité de Matériaux bons Conducteurs de la Chaleur. Influence de l’Etat de Surface, de l’Oxydation et de la Température,” Rev. Phys. Appl. 15, 1469 (1980).
[CrossRef]

Nicodemus, F. E.

Zhang, Y. W.

Y. W. Zhang, “Modification of the Sensitivity Equations of Various Infrared Systems,” Acta Phys. Sin. 29, 813 (1980).

Y. W. Zhang, Infrared Optical Engineering (Shanghai Scientific Press, 1983), chap. 8.

Zimmerman, J.

J. Zimmerman, Proc. Soc. Photo-Opt. Instrum. Eng. 226, 110 (1980).

Acta Phys. Sin. (1)

Y. W. Zhang, “Modification of the Sensitivity Equations of Various Infrared Systems,” Acta Phys. Sin. 29, 813 (1980).

Appl. Opt. (2)

J. Appl. Meteorol. (2)

A. Chedin et al., “A Single Channel Double-Viewing Angle Method for Sea Surface Temperature Determination from Coincident METEOSAT and TIROS-N Radiometric Measurements,” J. Appl. Meteorol. 21, 613 (1982).
[CrossRef]

J. A. Davies et al., “Field Determination of Surface Emissivity and Temperature for Lake Ontario,” J. Appl. Meteorol. 10, 811 (1971).
[CrossRef]

J. Geophys. Res. (2)

K. J. H. Buettner, C. D. Kern, “The Determination of Infrared Emissivities of Terrestrial Surfaces,” J. Geophys. Res. 70, 1329 (1965).
[CrossRef]

M. Griggs, J. Geophys. Res. 73, 7545 (1968).
[CrossRef]

J. Phys. E. (1)

J. L. Gardner, T. P. Jones, “Multiwavelength Radiation Pyrometry where Reflectance is Measured to Estimate Emissivity,” J. Phys. E. 13, 306 (1980).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. Zimmerman, Proc. Soc. Photo-Opt. Instrum. Eng. 226, 110 (1980).

Q. J. R. Meteorol. Soc. (1)

I. J. Barton, “Dual Channel Satellite Measurements of Sea Surface Temperature,” Q. J. R. Meteorol. Soc. 109, 365 (1983).
[CrossRef]

Rev. Phys. Appl. (1)

C. Martin, P. Fauchais, “Mesure par Thermographic Infranouge de l’Emissivité de Matériaux bons Conducteurs de la Chaleur. Influence de l’Etat de Surface, de l’Oxydation et de la Température,” Rev. Phys. Appl. 15, 1469 (1980).
[CrossRef]

Other (6)

B. E. Emilsson, presented at Second International Conference on Low Light and Thermal Imaging, 173, 5 (1980).

R. D. Hudson, Infrared System Engineering (Wiley, New York, 1969).

Y. W. Zhang, Infrared Optical Engineering (Shanghai Scientific Press, 1983), chap. 8.

W. L. Wolfe, G. J. Zissis, Eds., The Infrared Handbook (Environmental Research Institute of Michigan, Ann Arbor, 1978).

L. Z. Kpukcyhob, Cπpaboyhuk πo Ochobam Nhϕpakpachouˇ Texhuku, Mockba, ≪ Cobetckoe paguo ≫, 1978.

F. Beeke et al.., in Proceedings, Thirteenth International Symposium on Remote Sensing of the Environment (Environmental Research Institute of Michigan, Ann Arbor, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Self-radiation of the target and ambient radiation reflected by the target.

Fig. 2
Fig. 2

Solar radiation reflected by the earth and the earth’s thermal radiation.

Fig. 3
Fig. 3

Equipment for measuring the emissivity.

Tables (6)

Tables Icon

Table I TB Using Different Plates

Tables Icon

Table II TB Using the Same Plate

Tables Icon

Table III Normal Emissivities of Some Opaque Greybody Materials

Tables Icon

Table IV Normal Emissivities of Some Ground Targets

Tables Icon

Table V Truth Temperature of a Reference Plate (Measurement made Outside)

Tables Icon

Table VI Truth Temperature of a Reference Plate (Measurement made Indoors)

Equations (37)

Equations on this page are rendered with MathJax. Learn more.

P λ = D o 2 4 ω τ a λ τ o λ [ ɛ λ W ( λ , T ) + ρ λ W ( λ , T B ) - W ( λ , T C ) ] .
W ( λ , T ) = C 1 λ - 5 [ exp ( C 2 λ T ) - 1 ] - 1 ,
V s = λ 1 λ 2 δ R λ P λ d λ ,
R λ = V n D λ * / f ω Δ f .
V s = δ V n D o ω 4 F Δ f [ λ 1 λ 2 τ a λ τ o λ D λ * ɛ λ W ( λ , T ) d λ + λ 1 λ 2 τ a λ τ o λ D λ * ρ λ W ( λ , T B ) d λ - λ 1 λ 2 τ a λ τ o λ D λ * W ( λ , T C ) d λ ] ;
K 0 = V n δ τ a τ 0 D 0 D * ω 4 F Δ f ;
V s = K 0 [ ɛ λ 1 λ 2 W ( λ , T ) d λ + ρ λ 1 λ 2 W ( λ , T B ) d λ - λ 1 λ 2 W ( λ , T C ) d λ ] .
V ¯ s = ɛ V ( T ) + ( 1 - ɛ ) V ( T B ) - V ( T C ) ,
V ( T ) = K λ 1 λ 2 W ( λ , T ) d λ ,
V ( T B ) = K λ 1 λ 2 W ( λ , T B ) d λ ,
V ( T C ) = K λ 1 λ 2 W ( λ , T C ) d λ ;
K = K 0 A 0 .
ɛ = 1 - ρ .
V ( T e ) = ɛ V ( T ) + ( 1 - ɛ ) V ( T B ) = K λ 1 λ 2 W ( λ , T e ) d λ ,
V ¯ s = V ( T e ) - V ( T c ) ,
V ( T e ) = V ¯ s + V ( T c ) .
T = [ T e 4 - ( 1 - ɛ ) T B 4 ɛ ] 1 / 4 ,
T = ( T e 4 ɛ ) 1 / 4 .
V ( T e 1 ) = ɛ 1 V ( T r ) + ( 1 - ɛ 1 ) V ( T B ) .
V ( T e 2 ) = ɛ 2 V ( T r ) + ( 1 - ɛ 2 ) V ( T B ) .
V ( T B ) = [ V ( T e 2 ) - ɛ 2 ɛ 1 V ( T e 1 ) ] / ( 1 - ɛ 2 ɛ 1 ) .
Δ V ¯ s = ( 1 - ɛ ) V ( T B ) T B Δ T B ,
V ( T B ) T B = K λ 1 λ 2 W ( λ , T B ) T B d λ
ɛ = 1 - Δ V ¯ s / V ( T B ) T B Δ T B .
V ( T e o ) = ɛ V ( T ) + ɛ V ( T ) ρ ρ + ɛ V ( T ) ( ρ ρ ) 2 + + ɛ V ( T 1 B ) ρ + ɛ V ( T 1 B ) ρ ( ρ ρ ) + ɛ V ( T 1 B ) ρ ( ρ ρ ) 2 + = [ ɛ V ( T ) + ɛ V ( T 1 B ) ρ ] / ( 1 - ρ ρ ) .
V ( T e B ) = [ ɛ V ( T 1 B ) + ɛ V ( T ) ρ ] / ( 1 - ρ ρ ) .
V ( T e o ) = [ ɛ V ( T ) + ɛ V ( T 2 B ) ρ ] / ( 1 - ρ ρ ) .
V ( T e B ) = [ ɛ V ( T 2 B ) + ɛ V ( T ) ρ ] / ( 1 - ρ ρ ) ] .
V ( T e o ) - V ( T e o ) = ρ ɛ [ V ( T 1 B ) - V ( T 2 B ) ] / ( 1 - ρ ρ ) .
V ( T e B ) - V ( T e B ) = ɛ [ V ( T 1 B ) - V ( T 2 B ) ] / ( 1 - ρ ρ ) .
ρ = [ V ( T e o ) - V ( T e o ) ] / [ V ( T e B ) - V ( T e B ) ] ,
V ( T e o ) = ɛ V ( T ) + ρ V ( T 1 B ) .
V ( T e r ) = ɛ r V ( T r ) + ρ r V ( T 1 B ) .
V ( T e o ) = ɛ V ( T ) + ρ V ( T 2 B ) .
V ( T e r ) = ɛ r V ( T r ) + ρ r V ( T 2 B ) .
ɛ = 1 - ρ r [ V ( T e o ) - V ( T e o ) V ( T e r ) - V ( T e r ) ] .
V ( T ) = V ( T e ) - V ( T B ) ɛ + V ( T B ) = V ¯ s + V ( T C ) - V ( T B ) ɛ + V ( T B ) .

Metrics