Abstract

During the past several years the symmetric three-band (460-, 490-, 520-nm) spectral curvature algorithm (SCA) has demonstrated rather accurate determination of chlorophyll pigment concentration using low-altitude airborne ocean color data. It is shown herein that the in-water asymmetric SCA, when applied to certain recently proposed OCI (NOAA-K and SPOT-3) and OCM (ERS-1) satellite ocean color bands, can adequately recover chlorophyll-like pigments. These airborne findings suggest that the proposed new ocean color sensor bands are in general satisfactorily, but not necessarily optimally, positioned to allow space evaluation of the SCA using high-precision atmospherically corrected satellite radiances. The pigment concentration recovery is not as good when existing Coastal Zone Color Scanner bands are used in the SCA. The in-water asymmetric SCA chlorophyll pigment recovery evaluations were performed using (a) airborne laser-induced chlorophyll fluorescence and (b) concurrent passive upwelled radiances. Data from a separate ocean color sensor aboard the aircraft were further used to validate the findings.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. W. Grew, “Real-Time Test of MOCS Algorithm during Superflux 1980,” in The Chesapeake Bay Plume Study: Super-flux 1980, NASA CP 2188, J. W. Campbell, J. P. Thomas, Eds. (Langley Research Center, Hampton, VA, 1981).
  2. G. W. Grew, L. S. Mayo, “Ocean Color Algorithm for Remote Sensing of Chlorophyll,” NASA Tech. Paper 2164 (Langley Research Center, Hampton, VA, 1983).
  3. J. W. Campbell, W. E. Esaias, “Basis for Spectral Curvature Algorithms in Remote Sensing of Chlorophyll,” Appl. Opt. 22, 1084 (1983).
    [CrossRef] [PubMed]
  4. H. R. Gordon, A. Y. Morel, “Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, A Review,” in Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983), p. 30.
  5. H. R. Gordon, D. K. Clark, J. W. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton Pigment Concentrations in the Middle Atlantic Bight: Comparison of Ship Determinations and CZCS Estimates,” Appl. Opt. 22, 20 (1983).
    [CrossRef] [PubMed]
  6. F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Organic Pigments,” in Chesapeake Bay Plume Study Super-flux 1980, NASA Conf. Publ. 2188 (U.S. GPO, Washington, DC, 1981), p. 349.
  7. “Ocean Color Working Group,” a progress report to ESA Earth Observation Advisory Committee, European Space Agency Report ESA BR-20, Paris, France, June 1984.
  8. F. E. Hoge, R. E. Berry, R. N. Swift, “Active-Passive Airborne Ocean Color Measurement. 1: Instrumentation,” Appl. Opt. 25, 39 (1986).
    [CrossRef] [PubMed]
  9. F. E. Hoge, R. N. Swift, J. K. Yungel, “Active-Passive Airborne Ocean Color Measurement. 2: Applications,” Appl. Opt. 25, 48 (1986).
    [CrossRef] [PubMed]
  10. F. E. Hoge, R. N. Swift, “Airborne Simultaneous Spectroscopic Detection of Laser-Induced Water Raman Backscatter and Fluorescence from Chlorophyll a and Other Naturally Occurring Pigments,” Appl. Opt. 20, 3197 (1981).
    [CrossRef] [PubMed]
  11. F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Organic Pigments,” in Chesapeake Bay Plume Study Super-flux 1980, NASA Conf. Publ. 2188 (U.S. GPO, Washington, DC, 1981), p. 349.
  12. F. E. Hoge, R. N. Swift, “Airborne Dual Laser Excitation and Mapping of Phytoplankton Photopigments in a Gulf Stream Warm Core Ring,” Appl. Opt. 22, 2272 (1983).
    [CrossRef] [PubMed]
  13. F. E. Hoge, R. N. Swift, “Experimental Feasibility of the Airborne Measurement of Absolute Oil Fluorescence Spectral Conversion Efficiency,” Appl. Opt. 22, 37 (1983).
    [CrossRef] [PubMed]
  14. F. E. Hoge, R. N. Swift, “Oil Film Thickness Measurement Using Airborne Laser-Induced Water Raman Backscatter,” Appl. Opt. 19, 3269 (1980).
    [CrossRef] [PubMed]
  15. F. E. Hoge, R. N. Swift, “Absolute Tracer Dye Concentration Using Airborne Laser-Induced Water Raman Backscatter,” Appl. Opt. 20, 1191 (1981).
    [CrossRef] [PubMed]
  16. F. E. Hoge, R. N. Swift, “Airborne Detection of Oceanic Turbidity Cell Structure Using Depth-Resolved Laser-Induced Water Raman Backscatter,” Appl. Opt. 22, 3778 (1983).
    [CrossRef] [PubMed]
  17. F. E. Hoge, R. N. Swift, E. B. Frederick, “Water Depth Measurement Using an Airborne Pulsed Neon Laser System,” Appl. Opt. 19, 871 (1980).
    [CrossRef] [PubMed]
  18. F. E. Hoge, W. B. Krabill, R. N. Swift, “The Reflection of UV Laser Pulses from the Ocean,” Mar. Geod. 8, Nos. 1–4, 313 (1984).
    [CrossRef]
  19. J. L. Bufton, F. E. Hoge, R. N. Swift, “Airborne Measurements of Laser Backscatter from the Ocean Surface,” Appl. Opt. 22, 2603 (1983).
    [CrossRef] [PubMed]
  20. W. B. Krabill, J. G. Collins, L. E. Link, R. N. Swift, M. L. Butler, “Airborne Laser Topographic Mapping Results,” Photogram. Eng. Remote Sensing 50, 685 (1984).
  21. R. Nelson, W. B. Krabill, G. Maclean, “Determining Forest Canopy Characteristics Using Airborne Laser Data,” Remote Sensing Environ. 15, 201 (1984).
    [CrossRef]
  22. F. E. Hoge, R. N. Swift, J. K. Yungel, “Feasibility of Airborne Detection of Laser-Induced Fluorescence Emissions from Green Terrestrial Plants,” Appl. Opt. 22, 2991 (1983).
    [CrossRef] [PubMed]
  23. W. A. Hovis, J. S. Knoll, “Characteristics of an Internally Illuminated Calibration Sphere,” Appl. Opt. 22, 4004 (1983).
    [CrossRef] [PubMed]

1986 (2)

1984 (3)

W. B. Krabill, J. G. Collins, L. E. Link, R. N. Swift, M. L. Butler, “Airborne Laser Topographic Mapping Results,” Photogram. Eng. Remote Sensing 50, 685 (1984).

R. Nelson, W. B. Krabill, G. Maclean, “Determining Forest Canopy Characteristics Using Airborne Laser Data,” Remote Sensing Environ. 15, 201 (1984).
[CrossRef]

F. E. Hoge, W. B. Krabill, R. N. Swift, “The Reflection of UV Laser Pulses from the Ocean,” Mar. Geod. 8, Nos. 1–4, 313 (1984).
[CrossRef]

1983 (8)

1981 (2)

1980 (2)

Berry, R. E.

Broenkow, W. W.

Brown, J. W.

Bufton, J. L.

Butler, M. L.

W. B. Krabill, J. G. Collins, L. E. Link, R. N. Swift, M. L. Butler, “Airborne Laser Topographic Mapping Results,” Photogram. Eng. Remote Sensing 50, 685 (1984).

Campbell, J. W.

Clark, D. K.

Collins, J. G.

W. B. Krabill, J. G. Collins, L. E. Link, R. N. Swift, M. L. Butler, “Airborne Laser Topographic Mapping Results,” Photogram. Eng. Remote Sensing 50, 685 (1984).

Esaias, W. E.

Evans, R. H.

Frederick, E. B.

Gordon, H. R.

H. R. Gordon, D. K. Clark, J. W. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton Pigment Concentrations in the Middle Atlantic Bight: Comparison of Ship Determinations and CZCS Estimates,” Appl. Opt. 22, 20 (1983).
[CrossRef] [PubMed]

H. R. Gordon, A. Y. Morel, “Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, A Review,” in Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983), p. 30.

Grew, G. W.

G. W. Grew, L. S. Mayo, “Ocean Color Algorithm for Remote Sensing of Chlorophyll,” NASA Tech. Paper 2164 (Langley Research Center, Hampton, VA, 1983).

G. W. Grew, “Real-Time Test of MOCS Algorithm during Superflux 1980,” in The Chesapeake Bay Plume Study: Super-flux 1980, NASA CP 2188, J. W. Campbell, J. P. Thomas, Eds. (Langley Research Center, Hampton, VA, 1981).

Hoge, F. E.

F. E. Hoge, R. N. Swift, J. K. Yungel, “Active-Passive Airborne Ocean Color Measurement. 2: Applications,” Appl. Opt. 25, 48 (1986).
[CrossRef] [PubMed]

F. E. Hoge, R. E. Berry, R. N. Swift, “Active-Passive Airborne Ocean Color Measurement. 1: Instrumentation,” Appl. Opt. 25, 39 (1986).
[CrossRef] [PubMed]

F. E. Hoge, W. B. Krabill, R. N. Swift, “The Reflection of UV Laser Pulses from the Ocean,” Mar. Geod. 8, Nos. 1–4, 313 (1984).
[CrossRef]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Feasibility of Airborne Detection of Laser-Induced Fluorescence Emissions from Green Terrestrial Plants,” Appl. Opt. 22, 2991 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne Dual Laser Excitation and Mapping of Phytoplankton Photopigments in a Gulf Stream Warm Core Ring,” Appl. Opt. 22, 2272 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne Detection of Oceanic Turbidity Cell Structure Using Depth-Resolved Laser-Induced Water Raman Backscatter,” Appl. Opt. 22, 3778 (1983).
[CrossRef] [PubMed]

J. L. Bufton, F. E. Hoge, R. N. Swift, “Airborne Measurements of Laser Backscatter from the Ocean Surface,” Appl. Opt. 22, 2603 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Experimental Feasibility of the Airborne Measurement of Absolute Oil Fluorescence Spectral Conversion Efficiency,” Appl. Opt. 22, 37 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Absolute Tracer Dye Concentration Using Airborne Laser-Induced Water Raman Backscatter,” Appl. Opt. 20, 1191 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne Simultaneous Spectroscopic Detection of Laser-Induced Water Raman Backscatter and Fluorescence from Chlorophyll a and Other Naturally Occurring Pigments,” Appl. Opt. 20, 3197 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Oil Film Thickness Measurement Using Airborne Laser-Induced Water Raman Backscatter,” Appl. Opt. 19, 3269 (1980).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, E. B. Frederick, “Water Depth Measurement Using an Airborne Pulsed Neon Laser System,” Appl. Opt. 19, 871 (1980).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Organic Pigments,” in Chesapeake Bay Plume Study Super-flux 1980, NASA Conf. Publ. 2188 (U.S. GPO, Washington, DC, 1981), p. 349.

F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Organic Pigments,” in Chesapeake Bay Plume Study Super-flux 1980, NASA Conf. Publ. 2188 (U.S. GPO, Washington, DC, 1981), p. 349.

Hovis, W. A.

Knoll, J. S.

Krabill, W. B.

R. Nelson, W. B. Krabill, G. Maclean, “Determining Forest Canopy Characteristics Using Airborne Laser Data,” Remote Sensing Environ. 15, 201 (1984).
[CrossRef]

F. E. Hoge, W. B. Krabill, R. N. Swift, “The Reflection of UV Laser Pulses from the Ocean,” Mar. Geod. 8, Nos. 1–4, 313 (1984).
[CrossRef]

W. B. Krabill, J. G. Collins, L. E. Link, R. N. Swift, M. L. Butler, “Airborne Laser Topographic Mapping Results,” Photogram. Eng. Remote Sensing 50, 685 (1984).

Link, L. E.

W. B. Krabill, J. G. Collins, L. E. Link, R. N. Swift, M. L. Butler, “Airborne Laser Topographic Mapping Results,” Photogram. Eng. Remote Sensing 50, 685 (1984).

Maclean, G.

R. Nelson, W. B. Krabill, G. Maclean, “Determining Forest Canopy Characteristics Using Airborne Laser Data,” Remote Sensing Environ. 15, 201 (1984).
[CrossRef]

Mayo, L. S.

G. W. Grew, L. S. Mayo, “Ocean Color Algorithm for Remote Sensing of Chlorophyll,” NASA Tech. Paper 2164 (Langley Research Center, Hampton, VA, 1983).

Morel, A. Y.

H. R. Gordon, A. Y. Morel, “Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, A Review,” in Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983), p. 30.

Nelson, R.

R. Nelson, W. B. Krabill, G. Maclean, “Determining Forest Canopy Characteristics Using Airborne Laser Data,” Remote Sensing Environ. 15, 201 (1984).
[CrossRef]

Swift, R. N.

F. E. Hoge, R. N. Swift, J. K. Yungel, “Active-Passive Airborne Ocean Color Measurement. 2: Applications,” Appl. Opt. 25, 48 (1986).
[CrossRef] [PubMed]

F. E. Hoge, R. E. Berry, R. N. Swift, “Active-Passive Airborne Ocean Color Measurement. 1: Instrumentation,” Appl. Opt. 25, 39 (1986).
[CrossRef] [PubMed]

W. B. Krabill, J. G. Collins, L. E. Link, R. N. Swift, M. L. Butler, “Airborne Laser Topographic Mapping Results,” Photogram. Eng. Remote Sensing 50, 685 (1984).

F. E. Hoge, W. B. Krabill, R. N. Swift, “The Reflection of UV Laser Pulses from the Ocean,” Mar. Geod. 8, Nos. 1–4, 313 (1984).
[CrossRef]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Feasibility of Airborne Detection of Laser-Induced Fluorescence Emissions from Green Terrestrial Plants,” Appl. Opt. 22, 2991 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne Detection of Oceanic Turbidity Cell Structure Using Depth-Resolved Laser-Induced Water Raman Backscatter,” Appl. Opt. 22, 3778 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne Dual Laser Excitation and Mapping of Phytoplankton Photopigments in a Gulf Stream Warm Core Ring,” Appl. Opt. 22, 2272 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Experimental Feasibility of the Airborne Measurement of Absolute Oil Fluorescence Spectral Conversion Efficiency,” Appl. Opt. 22, 37 (1983).
[CrossRef] [PubMed]

J. L. Bufton, F. E. Hoge, R. N. Swift, “Airborne Measurements of Laser Backscatter from the Ocean Surface,” Appl. Opt. 22, 2603 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Absolute Tracer Dye Concentration Using Airborne Laser-Induced Water Raman Backscatter,” Appl. Opt. 20, 1191 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne Simultaneous Spectroscopic Detection of Laser-Induced Water Raman Backscatter and Fluorescence from Chlorophyll a and Other Naturally Occurring Pigments,” Appl. Opt. 20, 3197 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Oil Film Thickness Measurement Using Airborne Laser-Induced Water Raman Backscatter,” Appl. Opt. 19, 3269 (1980).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, E. B. Frederick, “Water Depth Measurement Using an Airborne Pulsed Neon Laser System,” Appl. Opt. 19, 871 (1980).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Organic Pigments,” in Chesapeake Bay Plume Study Super-flux 1980, NASA Conf. Publ. 2188 (U.S. GPO, Washington, DC, 1981), p. 349.

F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Organic Pigments,” in Chesapeake Bay Plume Study Super-flux 1980, NASA Conf. Publ. 2188 (U.S. GPO, Washington, DC, 1981), p. 349.

Yungel, J. K.

Appl. Opt. (14)

F. E. Hoge, R. N. Swift, E. B. Frederick, “Water Depth Measurement Using an Airborne Pulsed Neon Laser System,” Appl. Opt. 19, 871 (1980).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Oil Film Thickness Measurement Using Airborne Laser-Induced Water Raman Backscatter,” Appl. Opt. 19, 3269 (1980).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Absolute Tracer Dye Concentration Using Airborne Laser-Induced Water Raman Backscatter,” Appl. Opt. 20, 1191 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne Simultaneous Spectroscopic Detection of Laser-Induced Water Raman Backscatter and Fluorescence from Chlorophyll a and Other Naturally Occurring Pigments,” Appl. Opt. 20, 3197 (1981).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, J. W. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton Pigment Concentrations in the Middle Atlantic Bight: Comparison of Ship Determinations and CZCS Estimates,” Appl. Opt. 22, 20 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Experimental Feasibility of the Airborne Measurement of Absolute Oil Fluorescence Spectral Conversion Efficiency,” Appl. Opt. 22, 37 (1983).
[CrossRef] [PubMed]

J. W. Campbell, W. E. Esaias, “Basis for Spectral Curvature Algorithms in Remote Sensing of Chlorophyll,” Appl. Opt. 22, 1084 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne Dual Laser Excitation and Mapping of Phytoplankton Photopigments in a Gulf Stream Warm Core Ring,” Appl. Opt. 22, 2272 (1983).
[CrossRef] [PubMed]

J. L. Bufton, F. E. Hoge, R. N. Swift, “Airborne Measurements of Laser Backscatter from the Ocean Surface,” Appl. Opt. 22, 2603 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Feasibility of Airborne Detection of Laser-Induced Fluorescence Emissions from Green Terrestrial Plants,” Appl. Opt. 22, 2991 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne Detection of Oceanic Turbidity Cell Structure Using Depth-Resolved Laser-Induced Water Raman Backscatter,” Appl. Opt. 22, 3778 (1983).
[CrossRef] [PubMed]

W. A. Hovis, J. S. Knoll, “Characteristics of an Internally Illuminated Calibration Sphere,” Appl. Opt. 22, 4004 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. E. Berry, R. N. Swift, “Active-Passive Airborne Ocean Color Measurement. 1: Instrumentation,” Appl. Opt. 25, 39 (1986).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Active-Passive Airborne Ocean Color Measurement. 2: Applications,” Appl. Opt. 25, 48 (1986).
[CrossRef] [PubMed]

Mar. Geod. (1)

F. E. Hoge, W. B. Krabill, R. N. Swift, “The Reflection of UV Laser Pulses from the Ocean,” Mar. Geod. 8, Nos. 1–4, 313 (1984).
[CrossRef]

Photogram. Eng. Remote Sensing (1)

W. B. Krabill, J. G. Collins, L. E. Link, R. N. Swift, M. L. Butler, “Airborne Laser Topographic Mapping Results,” Photogram. Eng. Remote Sensing 50, 685 (1984).

Remote Sensing Environ. (1)

R. Nelson, W. B. Krabill, G. Maclean, “Determining Forest Canopy Characteristics Using Airborne Laser Data,” Remote Sensing Environ. 15, 201 (1984).
[CrossRef]

Other (6)

G. W. Grew, “Real-Time Test of MOCS Algorithm during Superflux 1980,” in The Chesapeake Bay Plume Study: Super-flux 1980, NASA CP 2188, J. W. Campbell, J. P. Thomas, Eds. (Langley Research Center, Hampton, VA, 1981).

G. W. Grew, L. S. Mayo, “Ocean Color Algorithm for Remote Sensing of Chlorophyll,” NASA Tech. Paper 2164 (Langley Research Center, Hampton, VA, 1983).

H. R. Gordon, A. Y. Morel, “Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, A Review,” in Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983), p. 30.

F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Organic Pigments,” in Chesapeake Bay Plume Study Super-flux 1980, NASA Conf. Publ. 2188 (U.S. GPO, Washington, DC, 1981), p. 349.

“Ocean Color Working Group,” a progress report to ESA Earth Observation Advisory Committee, European Space Agency Report ESA BR-20, Paris, France, June 1984.

F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Organic Pigments,” in Chesapeake Bay Plume Study Super-flux 1980, NASA Conf. Publ. 2188 (U.S. GPO, Washington, DC, 1981), p. 349.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Location of the SEEP field test site in the New York Bight where the airborne active and passive data were obtained. Line H had the highest pigment variability and was selected for the curvature algorithm study.

Fig. 2
Fig. 2

Comparison of the spectral curvature algorithm with the laser-induced and water-Raman-normalized chlorophyll fluorescence: (a) OCM, ERS-1 (445, 520, 565 nm); (b) OCI, NOAA-K (443, 490, 520 nm); (c) OCI, NOAA-K (490, 520, 565 nm); (d) OCI, SPOT-3 (443, 500, 565 nm).

Fig. 3
Fig. 3

Comparison of the 565-, 620-, 665-nm spectral curvature algorithm with the laser-induced and water-Raman-normalized phycoerythrin fluorescence.

Tables (1)

Tables Icon

Table I Suitable Spectral Curvature Algorithm Center Bands for Chlorophyll C and Phycoerythrin P

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

G m n ( λ i ) = L ( λ i ) 2 L ( λ i - m ) · L ( λ i + n ) ,
G 22 ( λ 7 ) = L ( 490 ) 2 L ( 460 ) · L ( 520 ) .
log e C = A - B G 22 ( λ 7 ) ,
log 10 C = a - b log 10 G 22 ( λ 7 ) ,
G = L ( λ 2 ) 2 L ( λ 1 ) · L ( λ 3 ) ,

Metrics