Abstract

A single pixel spectral response model for front-side illuminated visible imaging charge-coupled devices was used to interpret measurements of pixel-to-pixel spectral response variations in an area and a linear charge-coupled imager. Destructive analysis was performed on both devices from which the polysilicon (gate) and oxide layer thicknesses were inferred. The pertinent layer thicknesses in the spectral response models were systematically varied until the best agreement between the modeled response and experimental data were obtained. This matching procedure was quite successful for the interference fringe maxima and minima locations but less successful in matching the overall spectral envelope. Reasonable agreement between the measured (destructive analysis) and model-inferred layer thicknesses was obtained. The model was also useful in interpreting some unusual global characteristics found in the area imager.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Boyle, G. E. Smith, “Charge-Coupled Semiconductor Devices,” Bell Syst. Tech. J. 49, 587 (1970).
  2. R. W. Brown, S. G. Chamberlain, “Quantum Efficiency of a Silicon Gate Charge-Coupled Optical Imaging Array,” Phys. Status Solidi A 20, 679 (1973).
    [CrossRef]
  3. C. Anagnostopoulos, G. Sadasiv, “Transmittance of Air/SiO2/Polysilicon/SiO2/Si Structures,” IEEE J. Solid-State Circuits 10, 177 (1975).
    [CrossRef]
  4. T. H. Lee et al., “A Solid-State Image Sensor for Image Recording at 2000 Frames per Second,” IEEE Trans. Electron Devices ED-19, 1469 (1982).
  5. S. Marcus et al., “Preliminary Evaluation of a Fairchild CCD-211 and a New Camera System,” Soc. Proc. Instrum. Eng. 172, 219 (1979).
  6. O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1965), pp. 69–76.
  7. J. M. Eastman, “Surface Scattering in Optical Interference Coatings,” Ph.D. Thesis, U. Rochester, Rochester, NY (1974).
  8. J. M. Eastman, “Scattering by All-Dielectric Multilayer Bandpass Filters and Mirrors for Lasers,” Phys. Thin Films 10, 167 (1978).
  9. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1965), pp. 151–152, 212–213.
  10. P. W. Baumeister, “Methods of Altering the Characteristics of a Multilayer Stack,” J. Opt. Soc. Am. 52, 1149 (1962).
    [CrossRef]
  11. W. Dash, R. Newman, “Intrinsic Optical Absorption in Single-Crystal Germanium and Silicon at 77°K and 300°K,” Phys. Rev. 99, 1151 (1955).
    [CrossRef]
  12. G. Lubberts et al., “Optical Properties of Phosphorous-Doped Polycrystalline Silicon Layers,” J. Appl. Phys. 52, 6877 (1981).
    [CrossRef]
  13. H. R. Philipp, “Influence of Oxide Layers on the Determination of the Optical Properties of Silicon,” J. Appl. Phys. 43, 2835 (1972).
    [CrossRef]
  14. W. S. Rodney, R. J. Spindler, “Index of Refraction of Fused-Quartz Glass for Ultraviolet, Visible, and Infrared Wavelengths,” J. Res. Natl. Bur. Stand. 53, 185 (1964).
    [CrossRef]
  15. M. P. Kesler, “Spectral Response Nonuniformity Analysis of Charge-Coupled Imagers,” M.S.E.E. Thesis, MIT, Cambridge, MA (1984), Appendix II.
  16. J. R. Beall et al., “Preliminary Study of the Reliability of Imaging Charge-Coupled Devices,” Martin-Marietta Corp., MCR-78-572 (1978), pp. 45, 46.
  17. T. H. Lee et al., “A 360,000-Pixel Charge-Coupled Color-Image Sensor for Imaging Photographic Negatives,” IEEE Trans. Electron Devices ED-22, 1439 (1985).
  18. C. K. Carniglia, “Scalar Scattering Theory for Multilayer Optical Coatings,” Opt. Eng. 18, 104 (1979).
    [CrossRef]
  19. W. C. Bradley, Itek Corp., Lexington, MA; private communication.
  20. A. W. Lees, W. D. Ryan, “A Simple Model of a Buried Channel Charge-Coupled Device,” Solid State Electron. 17, 1163 (1974).
    [CrossRef]
  21. J. S. T. Huang, “Charge Handling Capacity in Charge-Coupled Devices,” IEEE Trans. Electron Devices ED-24, 1234 (1977).
    [CrossRef]

1985 (1)

T. H. Lee et al., “A 360,000-Pixel Charge-Coupled Color-Image Sensor for Imaging Photographic Negatives,” IEEE Trans. Electron Devices ED-22, 1439 (1985).

1982 (1)

T. H. Lee et al., “A Solid-State Image Sensor for Image Recording at 2000 Frames per Second,” IEEE Trans. Electron Devices ED-19, 1469 (1982).

1981 (1)

G. Lubberts et al., “Optical Properties of Phosphorous-Doped Polycrystalline Silicon Layers,” J. Appl. Phys. 52, 6877 (1981).
[CrossRef]

1979 (2)

S. Marcus et al., “Preliminary Evaluation of a Fairchild CCD-211 and a New Camera System,” Soc. Proc. Instrum. Eng. 172, 219 (1979).

C. K. Carniglia, “Scalar Scattering Theory for Multilayer Optical Coatings,” Opt. Eng. 18, 104 (1979).
[CrossRef]

1978 (1)

J. M. Eastman, “Scattering by All-Dielectric Multilayer Bandpass Filters and Mirrors for Lasers,” Phys. Thin Films 10, 167 (1978).

1977 (1)

J. S. T. Huang, “Charge Handling Capacity in Charge-Coupled Devices,” IEEE Trans. Electron Devices ED-24, 1234 (1977).
[CrossRef]

1975 (1)

C. Anagnostopoulos, G. Sadasiv, “Transmittance of Air/SiO2/Polysilicon/SiO2/Si Structures,” IEEE J. Solid-State Circuits 10, 177 (1975).
[CrossRef]

1974 (1)

A. W. Lees, W. D. Ryan, “A Simple Model of a Buried Channel Charge-Coupled Device,” Solid State Electron. 17, 1163 (1974).
[CrossRef]

1973 (1)

R. W. Brown, S. G. Chamberlain, “Quantum Efficiency of a Silicon Gate Charge-Coupled Optical Imaging Array,” Phys. Status Solidi A 20, 679 (1973).
[CrossRef]

1972 (1)

H. R. Philipp, “Influence of Oxide Layers on the Determination of the Optical Properties of Silicon,” J. Appl. Phys. 43, 2835 (1972).
[CrossRef]

1970 (1)

W. S. Boyle, G. E. Smith, “Charge-Coupled Semiconductor Devices,” Bell Syst. Tech. J. 49, 587 (1970).

1964 (1)

W. S. Rodney, R. J. Spindler, “Index of Refraction of Fused-Quartz Glass for Ultraviolet, Visible, and Infrared Wavelengths,” J. Res. Natl. Bur. Stand. 53, 185 (1964).
[CrossRef]

1962 (1)

1955 (1)

W. Dash, R. Newman, “Intrinsic Optical Absorption in Single-Crystal Germanium and Silicon at 77°K and 300°K,” Phys. Rev. 99, 1151 (1955).
[CrossRef]

Anagnostopoulos, C.

C. Anagnostopoulos, G. Sadasiv, “Transmittance of Air/SiO2/Polysilicon/SiO2/Si Structures,” IEEE J. Solid-State Circuits 10, 177 (1975).
[CrossRef]

Baumeister, P. W.

Beall, J. R.

J. R. Beall et al., “Preliminary Study of the Reliability of Imaging Charge-Coupled Devices,” Martin-Marietta Corp., MCR-78-572 (1978), pp. 45, 46.

Boyle, W. S.

W. S. Boyle, G. E. Smith, “Charge-Coupled Semiconductor Devices,” Bell Syst. Tech. J. 49, 587 (1970).

Bradley, W. C.

W. C. Bradley, Itek Corp., Lexington, MA; private communication.

Brown, R. W.

R. W. Brown, S. G. Chamberlain, “Quantum Efficiency of a Silicon Gate Charge-Coupled Optical Imaging Array,” Phys. Status Solidi A 20, 679 (1973).
[CrossRef]

Carniglia, C. K.

C. K. Carniglia, “Scalar Scattering Theory for Multilayer Optical Coatings,” Opt. Eng. 18, 104 (1979).
[CrossRef]

Chamberlain, S. G.

R. W. Brown, S. G. Chamberlain, “Quantum Efficiency of a Silicon Gate Charge-Coupled Optical Imaging Array,” Phys. Status Solidi A 20, 679 (1973).
[CrossRef]

Dash, W.

W. Dash, R. Newman, “Intrinsic Optical Absorption in Single-Crystal Germanium and Silicon at 77°K and 300°K,” Phys. Rev. 99, 1151 (1955).
[CrossRef]

Eastman, J. M.

J. M. Eastman, “Scattering by All-Dielectric Multilayer Bandpass Filters and Mirrors for Lasers,” Phys. Thin Films 10, 167 (1978).

J. M. Eastman, “Surface Scattering in Optical Interference Coatings,” Ph.D. Thesis, U. Rochester, Rochester, NY (1974).

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1965), pp. 69–76.

Huang, J. S. T.

J. S. T. Huang, “Charge Handling Capacity in Charge-Coupled Devices,” IEEE Trans. Electron Devices ED-24, 1234 (1977).
[CrossRef]

Kesler, M. P.

M. P. Kesler, “Spectral Response Nonuniformity Analysis of Charge-Coupled Imagers,” M.S.E.E. Thesis, MIT, Cambridge, MA (1984), Appendix II.

Lee, T. H.

T. H. Lee et al., “A 360,000-Pixel Charge-Coupled Color-Image Sensor for Imaging Photographic Negatives,” IEEE Trans. Electron Devices ED-22, 1439 (1985).

T. H. Lee et al., “A Solid-State Image Sensor for Image Recording at 2000 Frames per Second,” IEEE Trans. Electron Devices ED-19, 1469 (1982).

Lees, A. W.

A. W. Lees, W. D. Ryan, “A Simple Model of a Buried Channel Charge-Coupled Device,” Solid State Electron. 17, 1163 (1974).
[CrossRef]

Lubberts, G.

G. Lubberts et al., “Optical Properties of Phosphorous-Doped Polycrystalline Silicon Layers,” J. Appl. Phys. 52, 6877 (1981).
[CrossRef]

Marcus, S.

S. Marcus et al., “Preliminary Evaluation of a Fairchild CCD-211 and a New Camera System,” Soc. Proc. Instrum. Eng. 172, 219 (1979).

Newman, R.

W. Dash, R. Newman, “Intrinsic Optical Absorption in Single-Crystal Germanium and Silicon at 77°K and 300°K,” Phys. Rev. 99, 1151 (1955).
[CrossRef]

Papoulis, A.

A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1965), pp. 151–152, 212–213.

Philipp, H. R.

H. R. Philipp, “Influence of Oxide Layers on the Determination of the Optical Properties of Silicon,” J. Appl. Phys. 43, 2835 (1972).
[CrossRef]

Rodney, W. S.

W. S. Rodney, R. J. Spindler, “Index of Refraction of Fused-Quartz Glass for Ultraviolet, Visible, and Infrared Wavelengths,” J. Res. Natl. Bur. Stand. 53, 185 (1964).
[CrossRef]

Ryan, W. D.

A. W. Lees, W. D. Ryan, “A Simple Model of a Buried Channel Charge-Coupled Device,” Solid State Electron. 17, 1163 (1974).
[CrossRef]

Sadasiv, G.

C. Anagnostopoulos, G. Sadasiv, “Transmittance of Air/SiO2/Polysilicon/SiO2/Si Structures,” IEEE J. Solid-State Circuits 10, 177 (1975).
[CrossRef]

Smith, G. E.

W. S. Boyle, G. E. Smith, “Charge-Coupled Semiconductor Devices,” Bell Syst. Tech. J. 49, 587 (1970).

Spindler, R. J.

W. S. Rodney, R. J. Spindler, “Index of Refraction of Fused-Quartz Glass for Ultraviolet, Visible, and Infrared Wavelengths,” J. Res. Natl. Bur. Stand. 53, 185 (1964).
[CrossRef]

Bell Syst. Tech. J. (1)

W. S. Boyle, G. E. Smith, “Charge-Coupled Semiconductor Devices,” Bell Syst. Tech. J. 49, 587 (1970).

IEEE J. Solid-State Circuits (1)

C. Anagnostopoulos, G. Sadasiv, “Transmittance of Air/SiO2/Polysilicon/SiO2/Si Structures,” IEEE J. Solid-State Circuits 10, 177 (1975).
[CrossRef]

IEEE Trans. Electron Devices (3)

T. H. Lee et al., “A Solid-State Image Sensor for Image Recording at 2000 Frames per Second,” IEEE Trans. Electron Devices ED-19, 1469 (1982).

T. H. Lee et al., “A 360,000-Pixel Charge-Coupled Color-Image Sensor for Imaging Photographic Negatives,” IEEE Trans. Electron Devices ED-22, 1439 (1985).

J. S. T. Huang, “Charge Handling Capacity in Charge-Coupled Devices,” IEEE Trans. Electron Devices ED-24, 1234 (1977).
[CrossRef]

J. Appl. Phys. (2)

G. Lubberts et al., “Optical Properties of Phosphorous-Doped Polycrystalline Silicon Layers,” J. Appl. Phys. 52, 6877 (1981).
[CrossRef]

H. R. Philipp, “Influence of Oxide Layers on the Determination of the Optical Properties of Silicon,” J. Appl. Phys. 43, 2835 (1972).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Res. Natl. Bur. Stand. (1)

W. S. Rodney, R. J. Spindler, “Index of Refraction of Fused-Quartz Glass for Ultraviolet, Visible, and Infrared Wavelengths,” J. Res. Natl. Bur. Stand. 53, 185 (1964).
[CrossRef]

Opt. Eng. (1)

C. K. Carniglia, “Scalar Scattering Theory for Multilayer Optical Coatings,” Opt. Eng. 18, 104 (1979).
[CrossRef]

Phys. Rev. (1)

W. Dash, R. Newman, “Intrinsic Optical Absorption in Single-Crystal Germanium and Silicon at 77°K and 300°K,” Phys. Rev. 99, 1151 (1955).
[CrossRef]

Phys. Status Solidi A (1)

R. W. Brown, S. G. Chamberlain, “Quantum Efficiency of a Silicon Gate Charge-Coupled Optical Imaging Array,” Phys. Status Solidi A 20, 679 (1973).
[CrossRef]

Phys. Thin Films (1)

J. M. Eastman, “Scattering by All-Dielectric Multilayer Bandpass Filters and Mirrors for Lasers,” Phys. Thin Films 10, 167 (1978).

Soc. Proc. Instrum. Eng. (1)

S. Marcus et al., “Preliminary Evaluation of a Fairchild CCD-211 and a New Camera System,” Soc. Proc. Instrum. Eng. 172, 219 (1979).

Solid State Electron. (1)

A. W. Lees, W. D. Ryan, “A Simple Model of a Buried Channel Charge-Coupled Device,” Solid State Electron. 17, 1163 (1974).
[CrossRef]

Other (6)

O. S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1965), pp. 69–76.

J. M. Eastman, “Surface Scattering in Optical Interference Coatings,” Ph.D. Thesis, U. Rochester, Rochester, NY (1974).

A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, 1965), pp. 151–152, 212–213.

W. C. Bradley, Itek Corp., Lexington, MA; private communication.

M. P. Kesler, “Spectral Response Nonuniformity Analysis of Charge-Coupled Imagers,” M.S.E.E. Thesis, MIT, Cambridge, MA (1984), Appendix II.

J. R. Beall et al., “Preliminary Study of the Reliability of Imaging Charge-Coupled Devices,” Martin-Marietta Corp., MCR-78-572 (1978), pp. 45, 46.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Cross-sectional structure of a front-side illuminated CCD pixel. Real and imaginary indices of refraction of the various layers are indicated. The depletion layer boundary is also shown.

Fig. 2
Fig. 2

(a) Drawing gives the definition of the ith layer and interface ij. Layer thicknesses are denoted as di, and complex (real and imaginary) indices of refraction are denoted by ni, nj, etc. (b) The roughness function fij(x) is shown at the interface between layers i and j.

Fig. 3
Fig. 3

Flow diagram showing computational procedures used in the CCD spectral response model.

Fig. 4
Fig. 4

(a) Spectral transmittance through a polysilicon–silicon–dioxide layer pair on a silicon substrate. Thicknesses and the scattering effects of a 5-nm rms interface roughness are shown. (b) Spectral quantum efficiency for a nominal CCD pixel structure. The effect of varying the polysilicon gate thickness by 50 nm is shown.

Fig. 5
Fig. 5

Block diagram of the experimental configuration used for making and analyzing CCD spectral quantum efficiency measurements.

Fig. 6
Fig. 6

Three-dimensional isometric plot of the linear CCD array global spectral response characteristics. The data below 450 nm contain artifacts and are not valid.

Fig. 7
Fig. 7

Schematic diagram of the linear CCD pixel region in cross section.

Fig. 8
Fig. 8

Spectral response data for pixel 10 of the linear CCD and spectral quantum efficiency curves based on the indicated layer thicknesses. The data below ~450 nm contain artifacts and are not valid.

Fig. 9
Fig. 9

CID array physical layout with column/row definition.

Fig. 10
Fig. 10

Spectral response data for typical pixels in the left, center, and right columns of the CID device.

Fig. 11
Fig. 11

Sequence of isometric plots showing CID array global response to spectral flood illumination. Spectral response nonuniformity is clearly evident.

Fig. 12
Fig. 12

(a) Microphotograph of CID array taken from above the device (top view) and cross-sectional view of CID pixel structure taken with a scanning electron microscope. (b) Diagram of the cross-sectional structure of a CID pixel.

Fig. 13
Fig. 13

Spectral response data from a nominal CID pixel located in a column on the left side of the device. The solid line shows the spectral quantum efficiency calculated assuming a polysilicon gate thickness of 370 nm, an oxide thickness of 110 nm, and a glass overcoat thickness of 1600 nm.

Fig. 14
Fig. 14

Spectral response data from a nominal CID pixel located in a column in the center of the device. The solid line shows the spectral quantum efficiency calculated assuming the same oxide and glass overcoat thickness as Fig. 13 but with a 305-nm polysilicon gate thickness.

Fig. 15
Fig. 15

Overlay of spectral quantum efficiency curves calculated assuming 305- and 370-nm polysilicon gate thicknesses. Oxide and glass overcoat thicknesses are the same as Fig. 13 for both cases.

Fig. 16
Fig. 16

(a) Photomicrograph of the cross section of a pixel from the linear CCD imager taken at a magnification of 3600 using a scanning electron microscope. (b) Photomicrograph of the cross section of a pixel from the linear CCD imager taken at a magnification of 40,000 using a scanning electron microscope.

Fig. 17
Fig. 17

(a) Photomicrograph of the cross section of a CID array pixel located in a column near the center of the device. The magnification of this scanning electron microscope photo is estimated to be 12,225. (b) Photomicrograph of the cross section of a CID array pixel located in a column near the right-side of the device. The magnification of this scanning electron microscope photo is estimated to be 12,225.

Fig. 18
Fig. 18

Photomicrograph of the cross section of a CID array pixel taken with a scanning electron microscope at a magnification of 15,000 for calibration purposes.

Fig. 19
Fig. 19

Depletion width W vs integrated signal charge density (Qs/μm2) for surface-channel and buried-channel CCD pixel structures.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Q s ( t ) = Q s ( 0 ) + 0 t J tot ( W ) d t ,
W = W ( Q s ) .
W = - s C ox + [ ( s C ox ) 2 + 2 s q N A ( V G - V F B - q Q s C ox ) ] 1 / 2 ,
W = Q s q N d - s C ox + [ ( s C ox ) 2 - 2 β ( d c h + s C ox ) Q s q N d + β ( Q s 2 q 2 N d 2 + d c h 2 + d c h s C ox ) + 2 s q N A ( V G - V F B ) ] 1 / 2 ,

Metrics