Abstract

Recent sputtering techniques have been used to produce layered synthetic microstructures (LSMs) as dispersing devices for varied applications in x-ray optics and spectroscopy. These analyzers, specially suited for synchrotron radiation, have been mounted in a two-parallel crystal monochromator. In this paper we show the first experimental results obtained with beryl crystals and multilayers for analyzing x-ray spectral distributions transmitted through screens or reflected on mirrors of copper near the L2 and L3 absorption edges. The significance of these findings is discussed in terms of comparison with natural and synthetic crystals and of designing a useful dispersing device for x-ray spectroscopy.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Spiller et al.., “Controlled Fabrication of Multilayer Soft-X-Ray Mirrors,” Appl. Phys. Lett. 37, 1048 (1980).
    [CrossRef]
  2. T. W. Barbee, “Sputtered Layered Synthetic Microstructure (LSM) Dispersion Elements,” AIP Conf. Proc. 75, 131 (1981).
    [CrossRef]
  3. B. L. Henke, “Low Energy X-Ray Spectroscopy with Crystals with Multilayers,” AIP Conf. Proc. 75, 85 (1981).
    [CrossRef]
  4. E. Spiller, “Evaporated Multilayer Dispersion Elements for Soft X-Rays,” AIP Conf. Proc. 75, 124 (1981).
    [CrossRef]
  5. R. R. Whitlock, D. G. Nagel, “Crossed-Crystal Imaging of X-Ray Sources,” AIP Conf. Proc. 75, 334 (1981).
    [CrossRef]
  6. I. K. Schuller, “New Class of Layered Materials,” Phys. Rev. Lett. 44, 1597 (1980).
    [CrossRef]
  7. J. H. Underwood, T. W. Barbee, “Layered Synthetic Microstructures as Bragg Diffractors for X Rays and Extreme Ultraviolet: Theory and Predicted Performance,” Appl. Opt. 20, 3027 (1981).
    [CrossRef] [PubMed]
  8. J. V. Gilfrich, D. J. Nagel, T. W. Barbee, “Layered Synthetic Microstructures as Dispersing Devices in X-Ray Spectrometers,” Appl. Spectrosc. 36, 58 (1982).
    [CrossRef]
  9. P. Lee, R. J. Bartlett, D. R. Kania, “Soft X-Ray Optics Using Multilayer Mirrors,” Opt. Eng. 24, 197 (1985).
    [CrossRef]
  10. S. Bodeur, R. Barchewitz, “X-Ray Bragg Reflectivity and Photoabsorption of KAP in the O-K Region,” Solid State Commun. 49, 11 (1984).
    [CrossRef]
  11. R. Marmoret, J. M. Andre, “Bragg Reflectivity of Layered Synthetic Microstructures in the X-Ray Anomalous Scattering Regions,” Appl. Opt. 22, 17 (1983).
    [CrossRef] [PubMed]
  12. M. Berland et al., “Reflectivity and Resolution Measurements of Metallic Multilayers, Beryl, and KAP with Synchrotron Radiation in the 1 keV Photon Energy Region,” Proc. Soc. Photo-Opt. Instrum. Eng. 316, 169 (1981).
  13. D. J. Nagel, J. V. Gilfrich, N. G. Loter, T. W. Barbee, “X-Ray Optical Instruments Employing Layered Synthetic Microstructures,” in Proceedings, International Conference on X-Ray Processes and Inner Shell Ionization, Stirling, Scotland (25–29 Aug. 1980).
  14. R. Barchewitz, Y. Cauchois, U. Pierre et Marie Curie; private communication.
  15. M. Lemonnier, O. Collet, C. Depautex, J. M. Esteva, D. Raoux, “High Vacuum Two Crystal Soft X-Ray Monochromator,” Nucl. Instrum. Methods 152, 109 (1978).
    [CrossRef]
  16. R. Barchewitz, M. Montel, C. Bonnelle, “Selecteur de Frequences X Continues Realise pour le Rayonnement d’Orbite du Synchrotron de Frascati,” C. R. Acad. Sci. 264, 363 (1967).
  17. Y. Lepetre, A. Charai, “Multilayers Observed by Transmission Electron Spectroscopy,” Thin Solid Films 105, 71 (1983).
    [CrossRef]
  18. Y. Lepetre, G. Rasigni, “Characterization of Layered Synthetic Microstructure by Transmission Electron Microscopy and Diffraction,” Opt. Lett. 9, 433 (1984).
    [CrossRef] [PubMed]
  19. Y. Lepetre, G. Rasigni, R. Rivoira, R. Philip, J. J. Metois, “Layered Synthetic Microstructures: Roughness and Interfaces,” Surf. Sci. 162, 579 (1985).
    [CrossRef]
  20. M. Arbaoui, R. Barchewitz, J. M. Andre, “Performance of a LSM Spectrogoniometer for Characteristic X-Ray Lines,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 385 (1985).
  21. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabuhuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photo-absorption, Scattering and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
    [CrossRef]
  22. L. G. Parratt, “Surface Studies of Solids by Total Reflection of X-Rays,” Phys. Rev. 95, 359 (1954).
    [CrossRef]
  23. E. Spiller, “Low-Loss Reflection Using Absorbing Materials,” Appl. Phys. Lett. 20, 365 (1972).
    [CrossRef]
  24. E. Spiller, “Reflective Multilayer Coatings for the Far UV Region,” Appl. Opt. 15, 2333 (1976).
    [CrossRef] [PubMed]
  25. C. Bonnelle, “Contribution a l’Etude des Metaux de Transition du Premier Groupe, du Cuivre et de leurs Oxydes par Spectroscopie X dans le Domaine de 13 a 22 Å,” Thesis, U. Paris (1966).
  26. S. L. Hulbert, B. A. Bunker, F. C. Brown, “Copper L2,3 Near Edge Structure in Cu2O,” J. Appl. Crystallogr. 17, 344 (1984).
    [CrossRef]

1985 (3)

P. Lee, R. J. Bartlett, D. R. Kania, “Soft X-Ray Optics Using Multilayer Mirrors,” Opt. Eng. 24, 197 (1985).
[CrossRef]

Y. Lepetre, G. Rasigni, R. Rivoira, R. Philip, J. J. Metois, “Layered Synthetic Microstructures: Roughness and Interfaces,” Surf. Sci. 162, 579 (1985).
[CrossRef]

M. Arbaoui, R. Barchewitz, J. M. Andre, “Performance of a LSM Spectrogoniometer for Characteristic X-Ray Lines,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 385 (1985).

1984 (3)

S. Bodeur, R. Barchewitz, “X-Ray Bragg Reflectivity and Photoabsorption of KAP in the O-K Region,” Solid State Commun. 49, 11 (1984).
[CrossRef]

Y. Lepetre, G. Rasigni, “Characterization of Layered Synthetic Microstructure by Transmission Electron Microscopy and Diffraction,” Opt. Lett. 9, 433 (1984).
[CrossRef] [PubMed]

S. L. Hulbert, B. A. Bunker, F. C. Brown, “Copper L2,3 Near Edge Structure in Cu2O,” J. Appl. Crystallogr. 17, 344 (1984).
[CrossRef]

1983 (2)

1982 (2)

J. V. Gilfrich, D. J. Nagel, T. W. Barbee, “Layered Synthetic Microstructures as Dispersing Devices in X-Ray Spectrometers,” Appl. Spectrosc. 36, 58 (1982).
[CrossRef]

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabuhuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photo-absorption, Scattering and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

1981 (6)

J. H. Underwood, T. W. Barbee, “Layered Synthetic Microstructures as Bragg Diffractors for X Rays and Extreme Ultraviolet: Theory and Predicted Performance,” Appl. Opt. 20, 3027 (1981).
[CrossRef] [PubMed]

M. Berland et al., “Reflectivity and Resolution Measurements of Metallic Multilayers, Beryl, and KAP with Synchrotron Radiation in the 1 keV Photon Energy Region,” Proc. Soc. Photo-Opt. Instrum. Eng. 316, 169 (1981).

T. W. Barbee, “Sputtered Layered Synthetic Microstructure (LSM) Dispersion Elements,” AIP Conf. Proc. 75, 131 (1981).
[CrossRef]

B. L. Henke, “Low Energy X-Ray Spectroscopy with Crystals with Multilayers,” AIP Conf. Proc. 75, 85 (1981).
[CrossRef]

E. Spiller, “Evaporated Multilayer Dispersion Elements for Soft X-Rays,” AIP Conf. Proc. 75, 124 (1981).
[CrossRef]

R. R. Whitlock, D. G. Nagel, “Crossed-Crystal Imaging of X-Ray Sources,” AIP Conf. Proc. 75, 334 (1981).
[CrossRef]

1980 (2)

I. K. Schuller, “New Class of Layered Materials,” Phys. Rev. Lett. 44, 1597 (1980).
[CrossRef]

E. Spiller et al.., “Controlled Fabrication of Multilayer Soft-X-Ray Mirrors,” Appl. Phys. Lett. 37, 1048 (1980).
[CrossRef]

1978 (1)

M. Lemonnier, O. Collet, C. Depautex, J. M. Esteva, D. Raoux, “High Vacuum Two Crystal Soft X-Ray Monochromator,” Nucl. Instrum. Methods 152, 109 (1978).
[CrossRef]

1976 (1)

1972 (1)

E. Spiller, “Low-Loss Reflection Using Absorbing Materials,” Appl. Phys. Lett. 20, 365 (1972).
[CrossRef]

1967 (1)

R. Barchewitz, M. Montel, C. Bonnelle, “Selecteur de Frequences X Continues Realise pour le Rayonnement d’Orbite du Synchrotron de Frascati,” C. R. Acad. Sci. 264, 363 (1967).

1954 (1)

L. G. Parratt, “Surface Studies of Solids by Total Reflection of X-Rays,” Phys. Rev. 95, 359 (1954).
[CrossRef]

Andre, J. M.

M. Arbaoui, R. Barchewitz, J. M. Andre, “Performance of a LSM Spectrogoniometer for Characteristic X-Ray Lines,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 385 (1985).

R. Marmoret, J. M. Andre, “Bragg Reflectivity of Layered Synthetic Microstructures in the X-Ray Anomalous Scattering Regions,” Appl. Opt. 22, 17 (1983).
[CrossRef] [PubMed]

Arbaoui, M.

M. Arbaoui, R. Barchewitz, J. M. Andre, “Performance of a LSM Spectrogoniometer for Characteristic X-Ray Lines,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 385 (1985).

Barbee, T. W.

J. V. Gilfrich, D. J. Nagel, T. W. Barbee, “Layered Synthetic Microstructures as Dispersing Devices in X-Ray Spectrometers,” Appl. Spectrosc. 36, 58 (1982).
[CrossRef]

T. W. Barbee, “Sputtered Layered Synthetic Microstructure (LSM) Dispersion Elements,” AIP Conf. Proc. 75, 131 (1981).
[CrossRef]

J. H. Underwood, T. W. Barbee, “Layered Synthetic Microstructures as Bragg Diffractors for X Rays and Extreme Ultraviolet: Theory and Predicted Performance,” Appl. Opt. 20, 3027 (1981).
[CrossRef] [PubMed]

D. J. Nagel, J. V. Gilfrich, N. G. Loter, T. W. Barbee, “X-Ray Optical Instruments Employing Layered Synthetic Microstructures,” in Proceedings, International Conference on X-Ray Processes and Inner Shell Ionization, Stirling, Scotland (25–29 Aug. 1980).

Barchewitz, R.

M. Arbaoui, R. Barchewitz, J. M. Andre, “Performance of a LSM Spectrogoniometer for Characteristic X-Ray Lines,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 385 (1985).

S. Bodeur, R. Barchewitz, “X-Ray Bragg Reflectivity and Photoabsorption of KAP in the O-K Region,” Solid State Commun. 49, 11 (1984).
[CrossRef]

R. Barchewitz, M. Montel, C. Bonnelle, “Selecteur de Frequences X Continues Realise pour le Rayonnement d’Orbite du Synchrotron de Frascati,” C. R. Acad. Sci. 264, 363 (1967).

R. Barchewitz, Y. Cauchois, U. Pierre et Marie Curie; private communication.

Bartlett, R. J.

P. Lee, R. J. Bartlett, D. R. Kania, “Soft X-Ray Optics Using Multilayer Mirrors,” Opt. Eng. 24, 197 (1985).
[CrossRef]

Berland, M.

M. Berland et al., “Reflectivity and Resolution Measurements of Metallic Multilayers, Beryl, and KAP with Synchrotron Radiation in the 1 keV Photon Energy Region,” Proc. Soc. Photo-Opt. Instrum. Eng. 316, 169 (1981).

Bodeur, S.

S. Bodeur, R. Barchewitz, “X-Ray Bragg Reflectivity and Photoabsorption of KAP in the O-K Region,” Solid State Commun. 49, 11 (1984).
[CrossRef]

Bonnelle, C.

R. Barchewitz, M. Montel, C. Bonnelle, “Selecteur de Frequences X Continues Realise pour le Rayonnement d’Orbite du Synchrotron de Frascati,” C. R. Acad. Sci. 264, 363 (1967).

C. Bonnelle, “Contribution a l’Etude des Metaux de Transition du Premier Groupe, du Cuivre et de leurs Oxydes par Spectroscopie X dans le Domaine de 13 a 22 Å,” Thesis, U. Paris (1966).

Brown, F. C.

S. L. Hulbert, B. A. Bunker, F. C. Brown, “Copper L2,3 Near Edge Structure in Cu2O,” J. Appl. Crystallogr. 17, 344 (1984).
[CrossRef]

Bunker, B. A.

S. L. Hulbert, B. A. Bunker, F. C. Brown, “Copper L2,3 Near Edge Structure in Cu2O,” J. Appl. Crystallogr. 17, 344 (1984).
[CrossRef]

Cauchois, Y.

R. Barchewitz, Y. Cauchois, U. Pierre et Marie Curie; private communication.

Charai, A.

Y. Lepetre, A. Charai, “Multilayers Observed by Transmission Electron Spectroscopy,” Thin Solid Films 105, 71 (1983).
[CrossRef]

Collet, O.

M. Lemonnier, O. Collet, C. Depautex, J. M. Esteva, D. Raoux, “High Vacuum Two Crystal Soft X-Ray Monochromator,” Nucl. Instrum. Methods 152, 109 (1978).
[CrossRef]

Depautex, C.

M. Lemonnier, O. Collet, C. Depautex, J. M. Esteva, D. Raoux, “High Vacuum Two Crystal Soft X-Ray Monochromator,” Nucl. Instrum. Methods 152, 109 (1978).
[CrossRef]

Esteva, J. M.

M. Lemonnier, O. Collet, C. Depautex, J. M. Esteva, D. Raoux, “High Vacuum Two Crystal Soft X-Ray Monochromator,” Nucl. Instrum. Methods 152, 109 (1978).
[CrossRef]

Fujikawa, B. K.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabuhuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photo-absorption, Scattering and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

Gilfrich, J. V.

J. V. Gilfrich, D. J. Nagel, T. W. Barbee, “Layered Synthetic Microstructures as Dispersing Devices in X-Ray Spectrometers,” Appl. Spectrosc. 36, 58 (1982).
[CrossRef]

D. J. Nagel, J. V. Gilfrich, N. G. Loter, T. W. Barbee, “X-Ray Optical Instruments Employing Layered Synthetic Microstructures,” in Proceedings, International Conference on X-Ray Processes and Inner Shell Ionization, Stirling, Scotland (25–29 Aug. 1980).

Henke, B. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabuhuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photo-absorption, Scattering and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

B. L. Henke, “Low Energy X-Ray Spectroscopy with Crystals with Multilayers,” AIP Conf. Proc. 75, 85 (1981).
[CrossRef]

Hulbert, S. L.

S. L. Hulbert, B. A. Bunker, F. C. Brown, “Copper L2,3 Near Edge Structure in Cu2O,” J. Appl. Crystallogr. 17, 344 (1984).
[CrossRef]

Kania, D. R.

P. Lee, R. J. Bartlett, D. R. Kania, “Soft X-Ray Optics Using Multilayer Mirrors,” Opt. Eng. 24, 197 (1985).
[CrossRef]

Lee, P.

P. Lee, R. J. Bartlett, D. R. Kania, “Soft X-Ray Optics Using Multilayer Mirrors,” Opt. Eng. 24, 197 (1985).
[CrossRef]

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabuhuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photo-absorption, Scattering and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

Lemonnier, M.

M. Lemonnier, O. Collet, C. Depautex, J. M. Esteva, D. Raoux, “High Vacuum Two Crystal Soft X-Ray Monochromator,” Nucl. Instrum. Methods 152, 109 (1978).
[CrossRef]

Lepetre, Y.

Y. Lepetre, G. Rasigni, R. Rivoira, R. Philip, J. J. Metois, “Layered Synthetic Microstructures: Roughness and Interfaces,” Surf. Sci. 162, 579 (1985).
[CrossRef]

Y. Lepetre, G. Rasigni, “Characterization of Layered Synthetic Microstructure by Transmission Electron Microscopy and Diffraction,” Opt. Lett. 9, 433 (1984).
[CrossRef] [PubMed]

Y. Lepetre, A. Charai, “Multilayers Observed by Transmission Electron Spectroscopy,” Thin Solid Films 105, 71 (1983).
[CrossRef]

Loter, N. G.

D. J. Nagel, J. V. Gilfrich, N. G. Loter, T. W. Barbee, “X-Ray Optical Instruments Employing Layered Synthetic Microstructures,” in Proceedings, International Conference on X-Ray Processes and Inner Shell Ionization, Stirling, Scotland (25–29 Aug. 1980).

Marmoret, R.

Metois, J. J.

Y. Lepetre, G. Rasigni, R. Rivoira, R. Philip, J. J. Metois, “Layered Synthetic Microstructures: Roughness and Interfaces,” Surf. Sci. 162, 579 (1985).
[CrossRef]

Montel, M.

R. Barchewitz, M. Montel, C. Bonnelle, “Selecteur de Frequences X Continues Realise pour le Rayonnement d’Orbite du Synchrotron de Frascati,” C. R. Acad. Sci. 264, 363 (1967).

Nagel, D. G.

R. R. Whitlock, D. G. Nagel, “Crossed-Crystal Imaging of X-Ray Sources,” AIP Conf. Proc. 75, 334 (1981).
[CrossRef]

Nagel, D. J.

J. V. Gilfrich, D. J. Nagel, T. W. Barbee, “Layered Synthetic Microstructures as Dispersing Devices in X-Ray Spectrometers,” Appl. Spectrosc. 36, 58 (1982).
[CrossRef]

D. J. Nagel, J. V. Gilfrich, N. G. Loter, T. W. Barbee, “X-Ray Optical Instruments Employing Layered Synthetic Microstructures,” in Proceedings, International Conference on X-Ray Processes and Inner Shell Ionization, Stirling, Scotland (25–29 Aug. 1980).

Parratt, L. G.

L. G. Parratt, “Surface Studies of Solids by Total Reflection of X-Rays,” Phys. Rev. 95, 359 (1954).
[CrossRef]

Philip, R.

Y. Lepetre, G. Rasigni, R. Rivoira, R. Philip, J. J. Metois, “Layered Synthetic Microstructures: Roughness and Interfaces,” Surf. Sci. 162, 579 (1985).
[CrossRef]

Raoux, D.

M. Lemonnier, O. Collet, C. Depautex, J. M. Esteva, D. Raoux, “High Vacuum Two Crystal Soft X-Ray Monochromator,” Nucl. Instrum. Methods 152, 109 (1978).
[CrossRef]

Rasigni, G.

Y. Lepetre, G. Rasigni, R. Rivoira, R. Philip, J. J. Metois, “Layered Synthetic Microstructures: Roughness and Interfaces,” Surf. Sci. 162, 579 (1985).
[CrossRef]

Y. Lepetre, G. Rasigni, “Characterization of Layered Synthetic Microstructure by Transmission Electron Microscopy and Diffraction,” Opt. Lett. 9, 433 (1984).
[CrossRef] [PubMed]

Rivoira, R.

Y. Lepetre, G. Rasigni, R. Rivoira, R. Philip, J. J. Metois, “Layered Synthetic Microstructures: Roughness and Interfaces,” Surf. Sci. 162, 579 (1985).
[CrossRef]

Schuller, I. K.

I. K. Schuller, “New Class of Layered Materials,” Phys. Rev. Lett. 44, 1597 (1980).
[CrossRef]

Shimabuhuro, R. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabuhuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photo-absorption, Scattering and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

Spiller, E.

E. Spiller, “Evaporated Multilayer Dispersion Elements for Soft X-Rays,” AIP Conf. Proc. 75, 124 (1981).
[CrossRef]

E. Spiller et al.., “Controlled Fabrication of Multilayer Soft-X-Ray Mirrors,” Appl. Phys. Lett. 37, 1048 (1980).
[CrossRef]

E. Spiller, “Reflective Multilayer Coatings for the Far UV Region,” Appl. Opt. 15, 2333 (1976).
[CrossRef] [PubMed]

E. Spiller, “Low-Loss Reflection Using Absorbing Materials,” Appl. Phys. Lett. 20, 365 (1972).
[CrossRef]

Tanaka, T. J.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabuhuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photo-absorption, Scattering and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

Underwood, J. H.

Whitlock, R. R.

R. R. Whitlock, D. G. Nagel, “Crossed-Crystal Imaging of X-Ray Sources,” AIP Conf. Proc. 75, 334 (1981).
[CrossRef]

AIP Conf. Proc. (4)

T. W. Barbee, “Sputtered Layered Synthetic Microstructure (LSM) Dispersion Elements,” AIP Conf. Proc. 75, 131 (1981).
[CrossRef]

B. L. Henke, “Low Energy X-Ray Spectroscopy with Crystals with Multilayers,” AIP Conf. Proc. 75, 85 (1981).
[CrossRef]

E. Spiller, “Evaporated Multilayer Dispersion Elements for Soft X-Rays,” AIP Conf. Proc. 75, 124 (1981).
[CrossRef]

R. R. Whitlock, D. G. Nagel, “Crossed-Crystal Imaging of X-Ray Sources,” AIP Conf. Proc. 75, 334 (1981).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

E. Spiller, “Low-Loss Reflection Using Absorbing Materials,” Appl. Phys. Lett. 20, 365 (1972).
[CrossRef]

E. Spiller et al.., “Controlled Fabrication of Multilayer Soft-X-Ray Mirrors,” Appl. Phys. Lett. 37, 1048 (1980).
[CrossRef]

Appl. Spectrosc. (1)

At. Data Nucl. Data Tables (1)

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabuhuro, B. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photo-absorption, Scattering and Reflection,” At. Data Nucl. Data Tables 27, 1 (1982).
[CrossRef]

C. R. Acad. Sci. (1)

R. Barchewitz, M. Montel, C. Bonnelle, “Selecteur de Frequences X Continues Realise pour le Rayonnement d’Orbite du Synchrotron de Frascati,” C. R. Acad. Sci. 264, 363 (1967).

J. Appl. Crystallogr. (1)

S. L. Hulbert, B. A. Bunker, F. C. Brown, “Copper L2,3 Near Edge Structure in Cu2O,” J. Appl. Crystallogr. 17, 344 (1984).
[CrossRef]

Nucl. Instrum. Methods (1)

M. Lemonnier, O. Collet, C. Depautex, J. M. Esteva, D. Raoux, “High Vacuum Two Crystal Soft X-Ray Monochromator,” Nucl. Instrum. Methods 152, 109 (1978).
[CrossRef]

Opt. Eng. (1)

P. Lee, R. J. Bartlett, D. R. Kania, “Soft X-Ray Optics Using Multilayer Mirrors,” Opt. Eng. 24, 197 (1985).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

L. G. Parratt, “Surface Studies of Solids by Total Reflection of X-Rays,” Phys. Rev. 95, 359 (1954).
[CrossRef]

Phys. Rev. Lett. (1)

I. K. Schuller, “New Class of Layered Materials,” Phys. Rev. Lett. 44, 1597 (1980).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

M. Berland et al., “Reflectivity and Resolution Measurements of Metallic Multilayers, Beryl, and KAP with Synchrotron Radiation in the 1 keV Photon Energy Region,” Proc. Soc. Photo-Opt. Instrum. Eng. 316, 169 (1981).

M. Arbaoui, R. Barchewitz, J. M. Andre, “Performance of a LSM Spectrogoniometer for Characteristic X-Ray Lines,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 385 (1985).

Solid State Commun. (1)

S. Bodeur, R. Barchewitz, “X-Ray Bragg Reflectivity and Photoabsorption of KAP in the O-K Region,” Solid State Commun. 49, 11 (1984).
[CrossRef]

Surf. Sci. (1)

Y. Lepetre, G. Rasigni, R. Rivoira, R. Philip, J. J. Metois, “Layered Synthetic Microstructures: Roughness and Interfaces,” Surf. Sci. 162, 579 (1985).
[CrossRef]

Thin Solid Films (1)

Y. Lepetre, A. Charai, “Multilayers Observed by Transmission Electron Spectroscopy,” Thin Solid Films 105, 71 (1983).
[CrossRef]

Other (3)

D. J. Nagel, J. V. Gilfrich, N. G. Loter, T. W. Barbee, “X-Ray Optical Instruments Employing Layered Synthetic Microstructures,” in Proceedings, International Conference on X-Ray Processes and Inner Shell Ionization, Stirling, Scotland (25–29 Aug. 1980).

R. Barchewitz, Y. Cauchois, U. Pierre et Marie Curie; private communication.

C. Bonnelle, “Contribution a l’Etude des Metaux de Transition du Premier Groupe, du Cuivre et de leurs Oxydes par Spectroscopie X dans le Domaine de 13 a 22 Å,” Thesis, U. Paris (1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Block diagram of the experimental setup used for the measurements of photoabsorption and specular reflection. Rotation axes of the two reflectometers are parallel to the plane of orbit.

Fig. 2
Fig. 2

Photomicrograph of the cross section of a LSM that consists of forty pairs of W/C, sandwiched between two 150-Å thick carbon layers deposited onto a substrate. The mean period measured from the micrograph is 32.5 Å.

Fig. 3
Fig. 3

Schematic representation of the multilayer thin film. It consists of forty 10.2-Å thick tungsten layers separated by 22.3-Å carbon layers sandwiched between two 150-Å carbon layers deposited onto (111) silicon substrate.

Fig. 4
Fig. 4

Computer plot of the theoretically calculated reflectivity for different thicknesses of the two separative layers vs Bragg angle (E = 945 eV). We see no modification of the energetic position of the maximum of reflectivity or the FWHM, vs thickness of S. On the other hand, the peak reflectivity decreases 0.4% with the thickness of S.

Fig. 5
Fig. 5

Computer plot of the theoretically calculated peak reflectivity at the second Bragg order vs the number of bilayers N (E = 945 eV). The peak reflectivity reaches its maximum of 15.5% for N = 150.

Fig. 6
Fig. 6

Computer plot of the theroetically calculated full width at half-maximum (FWHM) at the first two Bragg reflections vs the number of bilayers N (E = 945 eV). For N = 120, the FWHM reaches its minimum value of 4.9 eV for the second order.

Fig. 7
Fig. 7

(a),(b) Reflection spectra (in arbitrary units) at different glancing angles: (a) u = 25 mrad; (b) u = 40 mrad. (c) Transmitted spectrum (in arbitrary units) of Cu2O in the L2,3 absorption edge region. Beryl crystals were the dispersive elements. The L2 and L3 absorption thresholds were used as the energy reference.

Fig. 8
Fig. 8

(a),(b) Spectral distribution of the specularly reflected radiation on a Cu-coated mirror in the vicinity of L2,3 absorption thresholds: (a) u = 25 mrad; (b) u = 40 mrad. (c) Transmission spectrum (in arbitrary units) of Cu2O in the L2,3 absorption edge region. LSMs were the dispersive elements.

Metrics