Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Benton, “Hologram Reconstruction with Extended Incoherent Sources,” J. Opt. Soc. Am. 59, 1545A (1969).
  2. H. Chen, F. T. S. Yu, “One-Step Rainbow Holograms,” Opt. Lett. 2, 85 (1978).
    [CrossRef] [PubMed]
  3. C. P. Grover, H. M. Van Driel, “Rainbow Holography Using Full Object Beam Aperture,” J. Opt. Soc. Am. 70, 335 (1980).
    [CrossRef]
  4. Q.-Z. Shan, Q.-C. Chen, H. Chen, “One-Step Rainbow Holography of Diffuse 3-D Objects with No Slit,” Appl. Opt. 22, 3902 (1983).
    [CrossRef] [PubMed]
  5. A. Beauregard, R. A. Lessard, “Rainbow Holography of 3-D Stationary Objects with No Slit,” Appl. Opt. 23, 3095 (1984).
    [CrossRef] [PubMed]
  6. C. M. Vest, Holographic Interferometry, (Wiley, New York, 1979).

1984 (1)

1983 (1)

1980 (1)

1978 (1)

1969 (1)

S. A. Benton, “Hologram Reconstruction with Extended Incoherent Sources,” J. Opt. Soc. Am. 59, 1545A (1969).

Beauregard, A.

Benton, S. A.

S. A. Benton, “Hologram Reconstruction with Extended Incoherent Sources,” J. Opt. Soc. Am. 59, 1545A (1969).

Chen, H.

Chen, Q.-C.

Grover, C. P.

Lessard, R. A.

Shan, Q.-Z.

Van Driel, H. M.

Vest, C. M.

C. M. Vest, Holographic Interferometry, (Wiley, New York, 1979).

Yu, F. T. S.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

First object used to record a one-step rainbow hologram. The plane wave is limited to 10 mm in its horizontal extent.

Fig. 2
Fig. 2

Second object used. The plane wave is now limited to 2 mm.

Fig. 3
Fig. 3

Reconstruction of the first object. Because of its relatively narrow spatial frequency spectrum, it cannot be recorded and then reconstructed properly.

Fig. 4
Fig. 4

Reconstruction of the second object. As a result of its relatively broad spectrum, the object can be reconstructed properly.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

U f ( X f , Y f ) = 1 i λ f exp ( i k Z 0 ) × exp [ i π λ f ( 1 - Z 0 f ) ( X f 2 + Y f 2 ) ] F x y { U ( X 0 , Y 0 ) } ,
U f ( X f , Y f - ) = 1 i λ f exp ( i k Z 0 ) exp [ i π λ f ( 1 - Z 0 f ) ( X f 2 + Y f 2 ) ] · exp [ i π λ f ( 1 - Z 0 f ) ( 2 - 2 Y f ) ] · F ¯ x y { U ( X 0 , Y 0 ) } ,
F ˜ x y { U ( X 0 , Y 0 ) } F x y { U ( X 0 , Y 0 ) } .
F ˜ x y { U ( X 0 , y 0 ) } = U ( X 0 , Y 0 ) exp ( 2 π i λ f Y 0 ) · exp [ - 2 π i λ f ( X 0 X f + Y 0 Y f ) ] d X 0 d Y 0 .
F ˜ x y { U ( X 0 , Y 0 ) } = F x y { U ( X 0 , Y 0 ) } + 2 π i λ f · F x y { Y 0 · U ( X 0 , Y 0 ) } - 2 ( π λ f ) 2 · F x y { Y 0 2 · U ( X 0 , Y 0 ) } + ,
F ˜ x y { U ( X 0 , Y 0 ) } = F x y U ( X 0 , Y 0 ) - ( λ f ) · f y F x y { f x , f y , } + ½ ( λ f ) 2 2 f y 2 F x y { f x , f y } - ,
λ f = 2 ( 1 - Z 0 f ) W .

Metrics