Abstract

A new technique and apparatus have been developed for the measurement of absolute electron impact photoemission cross sections in the 30–150-nm wavelength range. Synchrotron light is used as the primary intensity standard for the calibration of the detection efficiency of a vacuum ultraviolet (VUV) spectrometer–detector system. A multiadjustable manipulator was used to position precisely a Seya-Namioka-type spectrometer–detector system with respect to a narrow ray of synchrotron radiation. By scanning the beam of synchrotron radiation across the surface of the grating in the spectrometer, precise simulation of the geometry of the light source encountered in the electron impact photoemission measurement was realized. Analysis of the results underscores the fact that for spectrometer calibrations in the VUV, the calibration procedure depends on the geometry of the experimental source. The simultaneous determination of the absolute apparatus response function of the spectrometer–detector system and the geometrical factors pertaining to the electron impact photoemission source allows photoemission cross sections in the VUV to be determined with unparalleled precision.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. R. Canfield, R. G. Johnston, R. P. Madden, “NBS Detector Standards for the Far UV,” Appl. Opt. 12, 1611 (1973).
    [Crossref] [PubMed]
  2. E. B. Saloman, D. L. Ederer, “Absolute Radiometric Calibration of Detectors Between 200–600 Å,” Appl. Opt. 14, 1029 (1975).
    [Crossref] [PubMed]
  3. E. B. Saloman, “The Use of Synchrotron Radiation for Detector Calibrations,” Nucl. Instrum. Methods 172, 79 (1980).
    [Crossref]
  4. J. F. M. Aarts, F. J. de Heer, “Extension of the Branching-Ratio Method for Intensity Calibration between 1500 and 2600Å,” J. Opt. Soc. Am. 58, 1666 (1968).
    [Crossref]
  5. M. J. Mumma, E. C. Zipf, “Calibration of Vacuum-Ultraviolet Monochromators by the Molecular Branching-Ratio Technique,” J. Opt. Soc. Am. 61, 83 (1971).
    [Crossref]
  6. M. J. Mumma, “Molecular Branching-Ratio Method for Intensity Calibration of Optical Systems in the VUV,” J. Opt. Soc. Am. 62, 1459 (1972).
    [Crossref]
  7. E. Hinnov, “Highly Ionized Atoms in Tokamak Discharges,” Phys. Rev. A 14, 1533 (1976).
    [Crossref]
  8. A. F. J. van Raan, J. P. de Jongh, J. van Eck, “Excitation of Noble Gas Atoms by Electrons with Simultaneous Calibration of the Apparatus,” in Abstracts of Papers, Seventh International Conference on the Physics of Electronic and Atomic Collisions, L. M. Branscomb et al., Eds. (North-Holland, Amsterdam, 1971), pp. 702–704.
  9. A. F. J. van Raan, “An Absolute Intensity Calibration Method for Vacuum Ultraviolet Spectrometry based on Electron Impact Excitation,” Physica 65, 566 (1973).
    [Crossref]
  10. U. Finkenzeller, D. Labs, “Deuterium Lamp as a UV Continuum Source from 160 nm to 320 nm for Space Applications,” Appl. Opt. 18, 3938 (1979).
    [Crossref] [PubMed]
  11. J. M. Bridges, W. R. Ott, “Vacuum Ultraviolet Radiometry. 3: The Argon Mini-Arc as a New Secondary Standard of Spectral Radiance,” Appl. Opt. 16, 367 (1977).
    [Crossref] [PubMed]
  12. R. C. Preston, C. Brookes, F. W. J. Clutterbuck, “Vacuum Ultraviolet Radiance Transfer Standard based on an Argon Mini-Arc with Integral Differential Pumping Unit,” J. Phys. E 13, 1206 (1980).
    [Crossref]
  13. W. R. Ott, W. L. Wiese, “Far UV Spectral Radiance Calibrations at NBS,” Opt. Eng. 12, 86 (1973).
    [Crossref]
  14. W. R. Ott, P. Fieffe-Prevost, W. L. Wiese, “VUV Radiometry with Hydrogen Arcs. 1: Principle of the Method and Comparisons with Blackbody Calculations from 1650 Å to 3600 Å,” Appl. Opt. 12, 1618 (1973).
    [Crossref] [PubMed]
  15. W. R. Ott, K. Behringer, G. Gieres, “Vacuum Ultraviolet Radiometry with Hydrogen Arcs. 2: The High Power Arc as an Absolute Standard of Spectral Radiance from 124 nm to 360 nm,” Appl. Opt. 14, 2121 (1975).
    [Crossref] [PubMed]
  16. K. Behringer, P. Thoma, “Vacuum Ultraviolet Radiometry below 100 nm; the High-Power Hydrogen Arc as a Standard Source of Continuum Radiation Between 53 nm and 92 nm,” Appl. Opt. 18, 2586 (1979).
    [Crossref] [PubMed]
  17. K.-H. Tan, J. W. McConkey, “Simultaneous Ionization and Excitation of Ar by Electrons with Particular Attention to Configuration Interaction Effects,” Phys. Rev. A 10, 1212 (1974).
    [Crossref]
  18. B. F. J. Luyken, F. J. De Heer, R. Ch. Baas. “The Role of the Outer s Shell in Single Ionization of Ne, Ar, Kr, and Xe by Electron Impact,” Physica 61, 200 (1972)
    [Crossref]
  19. K.-H. Tan, F. G. Donaldson, J. W. McConkey, “Excitation of the 3s 3p6 2S and 3s2 3p4 4s 2p Levels of Ar4 and the 736 Å Line of Ne by Electrons,” Can. J. Phys. 52, 786 (1974).
    [Crossref]
  20. J. E. Mentall, H. D. Morgan, “Electron Impact Excitation of Ar in the Extreme VUV,” Phys. Rev. A 14, 954 (1976).
    [Crossref]
  21. J. M. Ajello, S. K. Srivastava, “Laboratory Studies of UV Emissions of H2 by Electron Impact,” Phys. Rev. A 25, 2485 (1982).
    [Crossref]
  22. D. H. Tomboulian, P. L. Hartman, “Spectral and Angular Distribution of UV Radiation from the 300 MeV Cornell Synchrotron,” Phys. Rev. 102, 1432 (1956).
    [Crossref]
  23. R. P. Madden, “Synchrotron Radiation and Applications,”in X-Ray Spectroscopy.L. V. Azaroff, Ed.(McGraw-Hill, NY, 1974), pp. 338–378.
  24. P. J. Key, “Synchrotron Radiation as a Standard of Spectral Emission,” Metrologia 6, 97 (1970).
    [Crossref]
  25. D. Lemke, D. Labs, “The Synchrotron Radiation of the 6 GeV DESY Machine as a Fundamental Radiometric Standard,” Appl. Opt. 6, 1043 (1967).
    [Crossref] [PubMed]
  26. D. Einfeld, D. Stuck, B. Wende, “Calibration of Radiometric Transfer Standards in the UV and VUV by Electron Synchrotron Radiation Using a Normal Incidence Radiometer,” Metrologia 14, 111 (1978).
    [Crossref]
  27. D. L. Ederer, E. B. Saloman, S. C. Ebner, E. P. Madden, “The Use of Synchrotron Radiation as an Absolute Source of VUV Radiation,” J. Res. Natl. Bur. Stand. Sect. A 79, 761–774 (1975).
    [Crossref]
  28. E. B. Saloman, S. C. Ebner, L. R. Hughey, “Radiometry using Synchrotron Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 279, 76 (1981).
  29. G. A. Schott, Electromagnetic Radiation (Cambridge, U.P., London, 1912), Eq. (128), p. 109.
  30. J. Schwinger, “On the Classical Radiation of Accelerated Electrons,” Phys. Rev. 75, 1912 (1949).
    [Crossref]
  31. J. S. Risley, A. McPherson, W. B. Westerveld, “Use of a Scaling Relationship for Synchrotron Radiation,” Phys. Rev. A 24, 3255 (1981).
    [Crossref]
  32. J. S. Risley, W. B. Westerveld, J. R. Peace, “Synchrotron Radiation at Close Distances to the Orbital Ring,” J. Opt. Soc. Am. 72, 943 (1982).
    [Crossref]
  33. W. B. Westerveld, A. McPherson, J. S. Risley, “Synchrotron Radiation Intensity for 50 Me V to 50 Ge U Electrons,” At. Data Nucl. Data Tables 28, 21 (1983).
    [Crossref]
  34. E. B. Saloman, S. C. Ebner, L. R. Hughey, “Vacuum Ultraviolet and Extreme Ultraviolet Radiometry using Synchrotron Radiation a NBS,” Opt. Eng. 21, 951 (1982).
    [Crossref]
  35. D. L. Ederer et al., “An Overview of Research at NBS using Synchrotron Radiation at SURF II,” IEEE Trans. Nucl. Sci. NS-301020 (1983).
    [Crossref]
  36. L. R. Hughey, A. R. Schaefer, “Reduced Absolute Uncertainty in the Irradiance of SURF II and Instrumentation for Measuring Linearity of X-ray and UV Detectors,” Nucl. Instrum. Methods 195, 367 (1982).
    [Crossref]
  37. W. B. Westerveld, H. G. M. Heideman, J. van Eck, “Electron Impact Excitation of 1′S→2′P and 1′S→3′P of He: Excitation Cross Sections and Polarization Fractions Obtained from XUV Radiation,” J. Phys. B 12, 115 (1979).
    [Crossref]
  38. J. J. Merrill, R. G. Layton, “The Calibration of Scanning Monochromators for the Measurement of Absolute Irradiance,” Appl. Opt. 5, 1818 (1966).
    [Crossref] [PubMed]
  39. H. A. B. Gardiner, J. J. Merrill, W. R. Pendleton, D. J. Baker, “Systematic Errors in Emission Cross Sections Arising in the Analysis of Laboratory Beam Measurements,” Appl. Opt. 8, 799 (1969).
    [Crossref] [PubMed]
  40. A look-up table based on the algorithms developed for Ref. 33 is used to calculate I(λ,0). R. Kendrick, N. Rouze, J. S. Risley, Apple Sync: Synchrotron Flux Calculation, copyright 1983.
  41. L. R. Hughey, R. P. Madden, “High Accuracy Orbital Plane Locator,” Nucl. Instrum. Meth. 172, 66 (1980).
    [Crossref]
  42. R. Kendrick, “A Comparison of Methods for Determining the Second Order Correction to the Detector Efficiency of a VUV Spectrometer,” M.S. Thesis, North Carolina State U. (1984) (unpublished).
  43. A. F. J. van Raan, “An Experimental Study of the Response of a Venetian Blind Type Photomultiplier,” J. Phys. E 5, 964 (1972).
    [Crossref]
  44. J. A. R. Samson, Techniques of Vacuum Ultraviolet Radiation (Pied Publishers, Lincoln, 1967).
  45. EMI GENCOM Inc., Plainview, NY.
  46. Instruments S.A. Jobin-Yvon, Metuchen, NJ.
  47. W. R. Hunter, J. F. Osantowski, G. Hass, “Reflectance of Aluminum Overcoated with MgF2 and LiF in the Wavelength Region from 1600 Å to 300 Å at Various Angles of Incidence,” Appl. Opt. 10, 540 (1971).
    [Crossref] [PubMed]
  48. J. Gilmore, Minuteman Laboratories, Inc.; private communication.
  49. W. R. Hunter, D. W. Angel, R. Tousey, “Thin Films and Their Uses for the XUV,” Appl. Opt. 4, 891 (1965).
    [Crossref]
  50. A. McPherson, “Measurement of the Electron Impact Photoemission Cross Sections of the 92.0 nm and the 93.2 nm Emission Lines of Ar II for the VUV Radiometric Project,” Ph.D. Thesis. North Carolina State U. (1984) (unpublished).
  51. E. B. Saloman, “Unfolding First and Second Order Diffracted Radiation when Using Synchrotron Radiation Sources: A Technique,” Appl. Opt. 14, 1391 (1975).
    [Crossref] [PubMed]

1983 (3)

W. B. Westerveld, A. McPherson, J. S. Risley, “Synchrotron Radiation Intensity for 50 Me V to 50 Ge U Electrons,” At. Data Nucl. Data Tables 28, 21 (1983).
[Crossref]

D. L. Ederer et al., “An Overview of Research at NBS using Synchrotron Radiation at SURF II,” IEEE Trans. Nucl. Sci. NS-301020 (1983).
[Crossref]

A look-up table based on the algorithms developed for Ref. 33 is used to calculate I(λ,0). R. Kendrick, N. Rouze, J. S. Risley, Apple Sync: Synchrotron Flux Calculation, copyright 1983.

1982 (4)

J. S. Risley, W. B. Westerveld, J. R. Peace, “Synchrotron Radiation at Close Distances to the Orbital Ring,” J. Opt. Soc. Am. 72, 943 (1982).
[Crossref]

L. R. Hughey, A. R. Schaefer, “Reduced Absolute Uncertainty in the Irradiance of SURF II and Instrumentation for Measuring Linearity of X-ray and UV Detectors,” Nucl. Instrum. Methods 195, 367 (1982).
[Crossref]

E. B. Saloman, S. C. Ebner, L. R. Hughey, “Vacuum Ultraviolet and Extreme Ultraviolet Radiometry using Synchrotron Radiation a NBS,” Opt. Eng. 21, 951 (1982).
[Crossref]

J. M. Ajello, S. K. Srivastava, “Laboratory Studies of UV Emissions of H2 by Electron Impact,” Phys. Rev. A 25, 2485 (1982).
[Crossref]

1981 (2)

E. B. Saloman, S. C. Ebner, L. R. Hughey, “Radiometry using Synchrotron Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 279, 76 (1981).

J. S. Risley, A. McPherson, W. B. Westerveld, “Use of a Scaling Relationship for Synchrotron Radiation,” Phys. Rev. A 24, 3255 (1981).
[Crossref]

1980 (3)

E. B. Saloman, “The Use of Synchrotron Radiation for Detector Calibrations,” Nucl. Instrum. Methods 172, 79 (1980).
[Crossref]

R. C. Preston, C. Brookes, F. W. J. Clutterbuck, “Vacuum Ultraviolet Radiance Transfer Standard based on an Argon Mini-Arc with Integral Differential Pumping Unit,” J. Phys. E 13, 1206 (1980).
[Crossref]

L. R. Hughey, R. P. Madden, “High Accuracy Orbital Plane Locator,” Nucl. Instrum. Meth. 172, 66 (1980).
[Crossref]

1979 (3)

1978 (1)

D. Einfeld, D. Stuck, B. Wende, “Calibration of Radiometric Transfer Standards in the UV and VUV by Electron Synchrotron Radiation Using a Normal Incidence Radiometer,” Metrologia 14, 111 (1978).
[Crossref]

1977 (1)

1976 (2)

E. Hinnov, “Highly Ionized Atoms in Tokamak Discharges,” Phys. Rev. A 14, 1533 (1976).
[Crossref]

J. E. Mentall, H. D. Morgan, “Electron Impact Excitation of Ar in the Extreme VUV,” Phys. Rev. A 14, 954 (1976).
[Crossref]

1975 (4)

1974 (2)

K.-H. Tan, F. G. Donaldson, J. W. McConkey, “Excitation of the 3s 3p6 2S and 3s2 3p4 4s 2p Levels of Ar4 and the 736 Å Line of Ne by Electrons,” Can. J. Phys. 52, 786 (1974).
[Crossref]

K.-H. Tan, J. W. McConkey, “Simultaneous Ionization and Excitation of Ar by Electrons with Particular Attention to Configuration Interaction Effects,” Phys. Rev. A 10, 1212 (1974).
[Crossref]

1973 (4)

W. R. Ott, W. L. Wiese, “Far UV Spectral Radiance Calibrations at NBS,” Opt. Eng. 12, 86 (1973).
[Crossref]

W. R. Ott, P. Fieffe-Prevost, W. L. Wiese, “VUV Radiometry with Hydrogen Arcs. 1: Principle of the Method and Comparisons with Blackbody Calculations from 1650 Å to 3600 Å,” Appl. Opt. 12, 1618 (1973).
[Crossref] [PubMed]

L. R. Canfield, R. G. Johnston, R. P. Madden, “NBS Detector Standards for the Far UV,” Appl. Opt. 12, 1611 (1973).
[Crossref] [PubMed]

A. F. J. van Raan, “An Absolute Intensity Calibration Method for Vacuum Ultraviolet Spectrometry based on Electron Impact Excitation,” Physica 65, 566 (1973).
[Crossref]

1972 (3)

M. J. Mumma, “Molecular Branching-Ratio Method for Intensity Calibration of Optical Systems in the VUV,” J. Opt. Soc. Am. 62, 1459 (1972).
[Crossref]

B. F. J. Luyken, F. J. De Heer, R. Ch. Baas. “The Role of the Outer s Shell in Single Ionization of Ne, Ar, Kr, and Xe by Electron Impact,” Physica 61, 200 (1972)
[Crossref]

A. F. J. van Raan, “An Experimental Study of the Response of a Venetian Blind Type Photomultiplier,” J. Phys. E 5, 964 (1972).
[Crossref]

1971 (2)

1970 (1)

P. J. Key, “Synchrotron Radiation as a Standard of Spectral Emission,” Metrologia 6, 97 (1970).
[Crossref]

1969 (1)

1968 (1)

1967 (1)

1966 (1)

1965 (1)

1956 (1)

D. H. Tomboulian, P. L. Hartman, “Spectral and Angular Distribution of UV Radiation from the 300 MeV Cornell Synchrotron,” Phys. Rev. 102, 1432 (1956).
[Crossref]

1949 (1)

J. Schwinger, “On the Classical Radiation of Accelerated Electrons,” Phys. Rev. 75, 1912 (1949).
[Crossref]

Aarts, J. F. M.

Ajello, J. M.

J. M. Ajello, S. K. Srivastava, “Laboratory Studies of UV Emissions of H2 by Electron Impact,” Phys. Rev. A 25, 2485 (1982).
[Crossref]

Angel, D. W.

Baas, R. Ch.

B. F. J. Luyken, F. J. De Heer, R. Ch. Baas. “The Role of the Outer s Shell in Single Ionization of Ne, Ar, Kr, and Xe by Electron Impact,” Physica 61, 200 (1972)
[Crossref]

Baker, D. J.

Behringer, K.

Bridges, J. M.

Brookes, C.

R. C. Preston, C. Brookes, F. W. J. Clutterbuck, “Vacuum Ultraviolet Radiance Transfer Standard based on an Argon Mini-Arc with Integral Differential Pumping Unit,” J. Phys. E 13, 1206 (1980).
[Crossref]

Canfield, L. R.

Clutterbuck, F. W. J.

R. C. Preston, C. Brookes, F. W. J. Clutterbuck, “Vacuum Ultraviolet Radiance Transfer Standard based on an Argon Mini-Arc with Integral Differential Pumping Unit,” J. Phys. E 13, 1206 (1980).
[Crossref]

De Heer, F. J.

B. F. J. Luyken, F. J. De Heer, R. Ch. Baas. “The Role of the Outer s Shell in Single Ionization of Ne, Ar, Kr, and Xe by Electron Impact,” Physica 61, 200 (1972)
[Crossref]

J. F. M. Aarts, F. J. de Heer, “Extension of the Branching-Ratio Method for Intensity Calibration between 1500 and 2600Å,” J. Opt. Soc. Am. 58, 1666 (1968).
[Crossref]

de Jongh, J. P.

A. F. J. van Raan, J. P. de Jongh, J. van Eck, “Excitation of Noble Gas Atoms by Electrons with Simultaneous Calibration of the Apparatus,” in Abstracts of Papers, Seventh International Conference on the Physics of Electronic and Atomic Collisions, L. M. Branscomb et al., Eds. (North-Holland, Amsterdam, 1971), pp. 702–704.

Donaldson, F. G.

K.-H. Tan, F. G. Donaldson, J. W. McConkey, “Excitation of the 3s 3p6 2S and 3s2 3p4 4s 2p Levels of Ar4 and the 736 Å Line of Ne by Electrons,” Can. J. Phys. 52, 786 (1974).
[Crossref]

Ebner, S. C.

E. B. Saloman, S. C. Ebner, L. R. Hughey, “Vacuum Ultraviolet and Extreme Ultraviolet Radiometry using Synchrotron Radiation a NBS,” Opt. Eng. 21, 951 (1982).
[Crossref]

E. B. Saloman, S. C. Ebner, L. R. Hughey, “Radiometry using Synchrotron Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 279, 76 (1981).

D. L. Ederer, E. B. Saloman, S. C. Ebner, E. P. Madden, “The Use of Synchrotron Radiation as an Absolute Source of VUV Radiation,” J. Res. Natl. Bur. Stand. Sect. A 79, 761–774 (1975).
[Crossref]

Ederer, D. L.

D. L. Ederer et al., “An Overview of Research at NBS using Synchrotron Radiation at SURF II,” IEEE Trans. Nucl. Sci. NS-301020 (1983).
[Crossref]

D. L. Ederer, E. B. Saloman, S. C. Ebner, E. P. Madden, “The Use of Synchrotron Radiation as an Absolute Source of VUV Radiation,” J. Res. Natl. Bur. Stand. Sect. A 79, 761–774 (1975).
[Crossref]

E. B. Saloman, D. L. Ederer, “Absolute Radiometric Calibration of Detectors Between 200–600 Å,” Appl. Opt. 14, 1029 (1975).
[Crossref] [PubMed]

Einfeld, D.

D. Einfeld, D. Stuck, B. Wende, “Calibration of Radiometric Transfer Standards in the UV and VUV by Electron Synchrotron Radiation Using a Normal Incidence Radiometer,” Metrologia 14, 111 (1978).
[Crossref]

Fieffe-Prevost, P.

Finkenzeller, U.

Gardiner, H. A. B.

Gieres, G.

Gilmore, J.

J. Gilmore, Minuteman Laboratories, Inc.; private communication.

Hartman, P. L.

D. H. Tomboulian, P. L. Hartman, “Spectral and Angular Distribution of UV Radiation from the 300 MeV Cornell Synchrotron,” Phys. Rev. 102, 1432 (1956).
[Crossref]

Hass, G.

Heideman, H. G. M.

W. B. Westerveld, H. G. M. Heideman, J. van Eck, “Electron Impact Excitation of 1′S→2′P and 1′S→3′P of He: Excitation Cross Sections and Polarization Fractions Obtained from XUV Radiation,” J. Phys. B 12, 115 (1979).
[Crossref]

Hinnov, E.

E. Hinnov, “Highly Ionized Atoms in Tokamak Discharges,” Phys. Rev. A 14, 1533 (1976).
[Crossref]

Hughey, L. R.

E. B. Saloman, S. C. Ebner, L. R. Hughey, “Vacuum Ultraviolet and Extreme Ultraviolet Radiometry using Synchrotron Radiation a NBS,” Opt. Eng. 21, 951 (1982).
[Crossref]

L. R. Hughey, A. R. Schaefer, “Reduced Absolute Uncertainty in the Irradiance of SURF II and Instrumentation for Measuring Linearity of X-ray and UV Detectors,” Nucl. Instrum. Methods 195, 367 (1982).
[Crossref]

E. B. Saloman, S. C. Ebner, L. R. Hughey, “Radiometry using Synchrotron Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 279, 76 (1981).

L. R. Hughey, R. P. Madden, “High Accuracy Orbital Plane Locator,” Nucl. Instrum. Meth. 172, 66 (1980).
[Crossref]

Hunter, W. R.

Johnston, R. G.

Kendrick, R.

A look-up table based on the algorithms developed for Ref. 33 is used to calculate I(λ,0). R. Kendrick, N. Rouze, J. S. Risley, Apple Sync: Synchrotron Flux Calculation, copyright 1983.

R. Kendrick, “A Comparison of Methods for Determining the Second Order Correction to the Detector Efficiency of a VUV Spectrometer,” M.S. Thesis, North Carolina State U. (1984) (unpublished).

Key, P. J.

P. J. Key, “Synchrotron Radiation as a Standard of Spectral Emission,” Metrologia 6, 97 (1970).
[Crossref]

Labs, D.

Layton, R. G.

Lemke, D.

Luyken, B. F. J.

B. F. J. Luyken, F. J. De Heer, R. Ch. Baas. “The Role of the Outer s Shell in Single Ionization of Ne, Ar, Kr, and Xe by Electron Impact,” Physica 61, 200 (1972)
[Crossref]

Madden, E. P.

D. L. Ederer, E. B. Saloman, S. C. Ebner, E. P. Madden, “The Use of Synchrotron Radiation as an Absolute Source of VUV Radiation,” J. Res. Natl. Bur. Stand. Sect. A 79, 761–774 (1975).
[Crossref]

Madden, R. P.

L. R. Hughey, R. P. Madden, “High Accuracy Orbital Plane Locator,” Nucl. Instrum. Meth. 172, 66 (1980).
[Crossref]

L. R. Canfield, R. G. Johnston, R. P. Madden, “NBS Detector Standards for the Far UV,” Appl. Opt. 12, 1611 (1973).
[Crossref] [PubMed]

R. P. Madden, “Synchrotron Radiation and Applications,”in X-Ray Spectroscopy.L. V. Azaroff, Ed.(McGraw-Hill, NY, 1974), pp. 338–378.

McConkey, J. W.

K.-H. Tan, F. G. Donaldson, J. W. McConkey, “Excitation of the 3s 3p6 2S and 3s2 3p4 4s 2p Levels of Ar4 and the 736 Å Line of Ne by Electrons,” Can. J. Phys. 52, 786 (1974).
[Crossref]

K.-H. Tan, J. W. McConkey, “Simultaneous Ionization and Excitation of Ar by Electrons with Particular Attention to Configuration Interaction Effects,” Phys. Rev. A 10, 1212 (1974).
[Crossref]

McPherson, A.

W. B. Westerveld, A. McPherson, J. S. Risley, “Synchrotron Radiation Intensity for 50 Me V to 50 Ge U Electrons,” At. Data Nucl. Data Tables 28, 21 (1983).
[Crossref]

J. S. Risley, A. McPherson, W. B. Westerveld, “Use of a Scaling Relationship for Synchrotron Radiation,” Phys. Rev. A 24, 3255 (1981).
[Crossref]

A. McPherson, “Measurement of the Electron Impact Photoemission Cross Sections of the 92.0 nm and the 93.2 nm Emission Lines of Ar II for the VUV Radiometric Project,” Ph.D. Thesis. North Carolina State U. (1984) (unpublished).

Mentall, J. E.

J. E. Mentall, H. D. Morgan, “Electron Impact Excitation of Ar in the Extreme VUV,” Phys. Rev. A 14, 954 (1976).
[Crossref]

Merrill, J. J.

Morgan, H. D.

J. E. Mentall, H. D. Morgan, “Electron Impact Excitation of Ar in the Extreme VUV,” Phys. Rev. A 14, 954 (1976).
[Crossref]

Mumma, M. J.

Osantowski, J. F.

Ott, W. R.

Peace, J. R.

Pendleton, W. R.

Preston, R. C.

R. C. Preston, C. Brookes, F. W. J. Clutterbuck, “Vacuum Ultraviolet Radiance Transfer Standard based on an Argon Mini-Arc with Integral Differential Pumping Unit,” J. Phys. E 13, 1206 (1980).
[Crossref]

Risley, J. S.

W. B. Westerveld, A. McPherson, J. S. Risley, “Synchrotron Radiation Intensity for 50 Me V to 50 Ge U Electrons,” At. Data Nucl. Data Tables 28, 21 (1983).
[Crossref]

A look-up table based on the algorithms developed for Ref. 33 is used to calculate I(λ,0). R. Kendrick, N. Rouze, J. S. Risley, Apple Sync: Synchrotron Flux Calculation, copyright 1983.

J. S. Risley, W. B. Westerveld, J. R. Peace, “Synchrotron Radiation at Close Distances to the Orbital Ring,” J. Opt. Soc. Am. 72, 943 (1982).
[Crossref]

J. S. Risley, A. McPherson, W. B. Westerveld, “Use of a Scaling Relationship for Synchrotron Radiation,” Phys. Rev. A 24, 3255 (1981).
[Crossref]

Rouze, N.

A look-up table based on the algorithms developed for Ref. 33 is used to calculate I(λ,0). R. Kendrick, N. Rouze, J. S. Risley, Apple Sync: Synchrotron Flux Calculation, copyright 1983.

Saloman, E. B.

E. B. Saloman, S. C. Ebner, L. R. Hughey, “Vacuum Ultraviolet and Extreme Ultraviolet Radiometry using Synchrotron Radiation a NBS,” Opt. Eng. 21, 951 (1982).
[Crossref]

E. B. Saloman, S. C. Ebner, L. R. Hughey, “Radiometry using Synchrotron Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 279, 76 (1981).

E. B. Saloman, “The Use of Synchrotron Radiation for Detector Calibrations,” Nucl. Instrum. Methods 172, 79 (1980).
[Crossref]

D. L. Ederer, E. B. Saloman, S. C. Ebner, E. P. Madden, “The Use of Synchrotron Radiation as an Absolute Source of VUV Radiation,” J. Res. Natl. Bur. Stand. Sect. A 79, 761–774 (1975).
[Crossref]

E. B. Saloman, D. L. Ederer, “Absolute Radiometric Calibration of Detectors Between 200–600 Å,” Appl. Opt. 14, 1029 (1975).
[Crossref] [PubMed]

E. B. Saloman, “Unfolding First and Second Order Diffracted Radiation when Using Synchrotron Radiation Sources: A Technique,” Appl. Opt. 14, 1391 (1975).
[Crossref] [PubMed]

Samson, J. A. R.

J. A. R. Samson, Techniques of Vacuum Ultraviolet Radiation (Pied Publishers, Lincoln, 1967).

Schaefer, A. R.

L. R. Hughey, A. R. Schaefer, “Reduced Absolute Uncertainty in the Irradiance of SURF II and Instrumentation for Measuring Linearity of X-ray and UV Detectors,” Nucl. Instrum. Methods 195, 367 (1982).
[Crossref]

Schott, G. A.

G. A. Schott, Electromagnetic Radiation (Cambridge, U.P., London, 1912), Eq. (128), p. 109.

Schwinger, J.

J. Schwinger, “On the Classical Radiation of Accelerated Electrons,” Phys. Rev. 75, 1912 (1949).
[Crossref]

Srivastava, S. K.

J. M. Ajello, S. K. Srivastava, “Laboratory Studies of UV Emissions of H2 by Electron Impact,” Phys. Rev. A 25, 2485 (1982).
[Crossref]

Stuck, D.

D. Einfeld, D. Stuck, B. Wende, “Calibration of Radiometric Transfer Standards in the UV and VUV by Electron Synchrotron Radiation Using a Normal Incidence Radiometer,” Metrologia 14, 111 (1978).
[Crossref]

Tan, K.-H.

K.-H. Tan, J. W. McConkey, “Simultaneous Ionization and Excitation of Ar by Electrons with Particular Attention to Configuration Interaction Effects,” Phys. Rev. A 10, 1212 (1974).
[Crossref]

K.-H. Tan, F. G. Donaldson, J. W. McConkey, “Excitation of the 3s 3p6 2S and 3s2 3p4 4s 2p Levels of Ar4 and the 736 Å Line of Ne by Electrons,” Can. J. Phys. 52, 786 (1974).
[Crossref]

Thoma, P.

Tomboulian, D. H.

D. H. Tomboulian, P. L. Hartman, “Spectral and Angular Distribution of UV Radiation from the 300 MeV Cornell Synchrotron,” Phys. Rev. 102, 1432 (1956).
[Crossref]

Tousey, R.

van Eck, J.

W. B. Westerveld, H. G. M. Heideman, J. van Eck, “Electron Impact Excitation of 1′S→2′P and 1′S→3′P of He: Excitation Cross Sections and Polarization Fractions Obtained from XUV Radiation,” J. Phys. B 12, 115 (1979).
[Crossref]

A. F. J. van Raan, J. P. de Jongh, J. van Eck, “Excitation of Noble Gas Atoms by Electrons with Simultaneous Calibration of the Apparatus,” in Abstracts of Papers, Seventh International Conference on the Physics of Electronic and Atomic Collisions, L. M. Branscomb et al., Eds. (North-Holland, Amsterdam, 1971), pp. 702–704.

van Raan, A. F. J.

A. F. J. van Raan, “An Absolute Intensity Calibration Method for Vacuum Ultraviolet Spectrometry based on Electron Impact Excitation,” Physica 65, 566 (1973).
[Crossref]

A. F. J. van Raan, “An Experimental Study of the Response of a Venetian Blind Type Photomultiplier,” J. Phys. E 5, 964 (1972).
[Crossref]

A. F. J. van Raan, J. P. de Jongh, J. van Eck, “Excitation of Noble Gas Atoms by Electrons with Simultaneous Calibration of the Apparatus,” in Abstracts of Papers, Seventh International Conference on the Physics of Electronic and Atomic Collisions, L. M. Branscomb et al., Eds. (North-Holland, Amsterdam, 1971), pp. 702–704.

Wende, B.

D. Einfeld, D. Stuck, B. Wende, “Calibration of Radiometric Transfer Standards in the UV and VUV by Electron Synchrotron Radiation Using a Normal Incidence Radiometer,” Metrologia 14, 111 (1978).
[Crossref]

Westerveld, W. B.

W. B. Westerveld, A. McPherson, J. S. Risley, “Synchrotron Radiation Intensity for 50 Me V to 50 Ge U Electrons,” At. Data Nucl. Data Tables 28, 21 (1983).
[Crossref]

J. S. Risley, W. B. Westerveld, J. R. Peace, “Synchrotron Radiation at Close Distances to the Orbital Ring,” J. Opt. Soc. Am. 72, 943 (1982).
[Crossref]

J. S. Risley, A. McPherson, W. B. Westerveld, “Use of a Scaling Relationship for Synchrotron Radiation,” Phys. Rev. A 24, 3255 (1981).
[Crossref]

W. B. Westerveld, H. G. M. Heideman, J. van Eck, “Electron Impact Excitation of 1′S→2′P and 1′S→3′P of He: Excitation Cross Sections and Polarization Fractions Obtained from XUV Radiation,” J. Phys. B 12, 115 (1979).
[Crossref]

Wiese, W. L.

Zipf, E. C.

Appl. Opt. (13)

U. Finkenzeller, D. Labs, “Deuterium Lamp as a UV Continuum Source from 160 nm to 320 nm for Space Applications,” Appl. Opt. 18, 3938 (1979).
[Crossref] [PubMed]

J. M. Bridges, W. R. Ott, “Vacuum Ultraviolet Radiometry. 3: The Argon Mini-Arc as a New Secondary Standard of Spectral Radiance,” Appl. Opt. 16, 367 (1977).
[Crossref] [PubMed]

W. R. Ott, P. Fieffe-Prevost, W. L. Wiese, “VUV Radiometry with Hydrogen Arcs. 1: Principle of the Method and Comparisons with Blackbody Calculations from 1650 Å to 3600 Å,” Appl. Opt. 12, 1618 (1973).
[Crossref] [PubMed]

W. R. Ott, K. Behringer, G. Gieres, “Vacuum Ultraviolet Radiometry with Hydrogen Arcs. 2: The High Power Arc as an Absolute Standard of Spectral Radiance from 124 nm to 360 nm,” Appl. Opt. 14, 2121 (1975).
[Crossref] [PubMed]

K. Behringer, P. Thoma, “Vacuum Ultraviolet Radiometry below 100 nm; the High-Power Hydrogen Arc as a Standard Source of Continuum Radiation Between 53 nm and 92 nm,” Appl. Opt. 18, 2586 (1979).
[Crossref] [PubMed]

L. R. Canfield, R. G. Johnston, R. P. Madden, “NBS Detector Standards for the Far UV,” Appl. Opt. 12, 1611 (1973).
[Crossref] [PubMed]

E. B. Saloman, D. L. Ederer, “Absolute Radiometric Calibration of Detectors Between 200–600 Å,” Appl. Opt. 14, 1029 (1975).
[Crossref] [PubMed]

D. Lemke, D. Labs, “The Synchrotron Radiation of the 6 GeV DESY Machine as a Fundamental Radiometric Standard,” Appl. Opt. 6, 1043 (1967).
[Crossref] [PubMed]

J. J. Merrill, R. G. Layton, “The Calibration of Scanning Monochromators for the Measurement of Absolute Irradiance,” Appl. Opt. 5, 1818 (1966).
[Crossref] [PubMed]

H. A. B. Gardiner, J. J. Merrill, W. R. Pendleton, D. J. Baker, “Systematic Errors in Emission Cross Sections Arising in the Analysis of Laboratory Beam Measurements,” Appl. Opt. 8, 799 (1969).
[Crossref] [PubMed]

W. R. Hunter, J. F. Osantowski, G. Hass, “Reflectance of Aluminum Overcoated with MgF2 and LiF in the Wavelength Region from 1600 Å to 300 Å at Various Angles of Incidence,” Appl. Opt. 10, 540 (1971).
[Crossref] [PubMed]

W. R. Hunter, D. W. Angel, R. Tousey, “Thin Films and Their Uses for the XUV,” Appl. Opt. 4, 891 (1965).
[Crossref]

E. B. Saloman, “Unfolding First and Second Order Diffracted Radiation when Using Synchrotron Radiation Sources: A Technique,” Appl. Opt. 14, 1391 (1975).
[Crossref] [PubMed]

Apple Sync: Synchrotron Flux Calculation (1)

A look-up table based on the algorithms developed for Ref. 33 is used to calculate I(λ,0). R. Kendrick, N. Rouze, J. S. Risley, Apple Sync: Synchrotron Flux Calculation, copyright 1983.

At. Data Nucl. Data Tables (1)

W. B. Westerveld, A. McPherson, J. S. Risley, “Synchrotron Radiation Intensity for 50 Me V to 50 Ge U Electrons,” At. Data Nucl. Data Tables 28, 21 (1983).
[Crossref]

Can. J. Phys. (1)

K.-H. Tan, F. G. Donaldson, J. W. McConkey, “Excitation of the 3s 3p6 2S and 3s2 3p4 4s 2p Levels of Ar4 and the 736 Å Line of Ne by Electrons,” Can. J. Phys. 52, 786 (1974).
[Crossref]

IEEE Trans. Nucl. Sci. (1)

D. L. Ederer et al., “An Overview of Research at NBS using Synchrotron Radiation at SURF II,” IEEE Trans. Nucl. Sci. NS-301020 (1983).
[Crossref]

J. Opt. Soc. Am. (4)

J. Phys. B (1)

W. B. Westerveld, H. G. M. Heideman, J. van Eck, “Electron Impact Excitation of 1′S→2′P and 1′S→3′P of He: Excitation Cross Sections and Polarization Fractions Obtained from XUV Radiation,” J. Phys. B 12, 115 (1979).
[Crossref]

J. Phys. E (2)

R. C. Preston, C. Brookes, F. W. J. Clutterbuck, “Vacuum Ultraviolet Radiance Transfer Standard based on an Argon Mini-Arc with Integral Differential Pumping Unit,” J. Phys. E 13, 1206 (1980).
[Crossref]

A. F. J. van Raan, “An Experimental Study of the Response of a Venetian Blind Type Photomultiplier,” J. Phys. E 5, 964 (1972).
[Crossref]

J. Res. Natl. Bur. Stand. Sect. A (1)

D. L. Ederer, E. B. Saloman, S. C. Ebner, E. P. Madden, “The Use of Synchrotron Radiation as an Absolute Source of VUV Radiation,” J. Res. Natl. Bur. Stand. Sect. A 79, 761–774 (1975).
[Crossref]

Metrologia (2)

D. Einfeld, D. Stuck, B. Wende, “Calibration of Radiometric Transfer Standards in the UV and VUV by Electron Synchrotron Radiation Using a Normal Incidence Radiometer,” Metrologia 14, 111 (1978).
[Crossref]

P. J. Key, “Synchrotron Radiation as a Standard of Spectral Emission,” Metrologia 6, 97 (1970).
[Crossref]

Nucl. Instrum. Meth. (1)

L. R. Hughey, R. P. Madden, “High Accuracy Orbital Plane Locator,” Nucl. Instrum. Meth. 172, 66 (1980).
[Crossref]

Nucl. Instrum. Methods (2)

L. R. Hughey, A. R. Schaefer, “Reduced Absolute Uncertainty in the Irradiance of SURF II and Instrumentation for Measuring Linearity of X-ray and UV Detectors,” Nucl. Instrum. Methods 195, 367 (1982).
[Crossref]

E. B. Saloman, “The Use of Synchrotron Radiation for Detector Calibrations,” Nucl. Instrum. Methods 172, 79 (1980).
[Crossref]

Opt. Eng. (2)

W. R. Ott, W. L. Wiese, “Far UV Spectral Radiance Calibrations at NBS,” Opt. Eng. 12, 86 (1973).
[Crossref]

E. B. Saloman, S. C. Ebner, L. R. Hughey, “Vacuum Ultraviolet and Extreme Ultraviolet Radiometry using Synchrotron Radiation a NBS,” Opt. Eng. 21, 951 (1982).
[Crossref]

Phys. Rev. (2)

J. Schwinger, “On the Classical Radiation of Accelerated Electrons,” Phys. Rev. 75, 1912 (1949).
[Crossref]

D. H. Tomboulian, P. L. Hartman, “Spectral and Angular Distribution of UV Radiation from the 300 MeV Cornell Synchrotron,” Phys. Rev. 102, 1432 (1956).
[Crossref]

Phys. Rev. A (5)

J. S. Risley, A. McPherson, W. B. Westerveld, “Use of a Scaling Relationship for Synchrotron Radiation,” Phys. Rev. A 24, 3255 (1981).
[Crossref]

E. Hinnov, “Highly Ionized Atoms in Tokamak Discharges,” Phys. Rev. A 14, 1533 (1976).
[Crossref]

J. E. Mentall, H. D. Morgan, “Electron Impact Excitation of Ar in the Extreme VUV,” Phys. Rev. A 14, 954 (1976).
[Crossref]

J. M. Ajello, S. K. Srivastava, “Laboratory Studies of UV Emissions of H2 by Electron Impact,” Phys. Rev. A 25, 2485 (1982).
[Crossref]

K.-H. Tan, J. W. McConkey, “Simultaneous Ionization and Excitation of Ar by Electrons with Particular Attention to Configuration Interaction Effects,” Phys. Rev. A 10, 1212 (1974).
[Crossref]

Physica (2)

B. F. J. Luyken, F. J. De Heer, R. Ch. Baas. “The Role of the Outer s Shell in Single Ionization of Ne, Ar, Kr, and Xe by Electron Impact,” Physica 61, 200 (1972)
[Crossref]

A. F. J. van Raan, “An Absolute Intensity Calibration Method for Vacuum Ultraviolet Spectrometry based on Electron Impact Excitation,” Physica 65, 566 (1973).
[Crossref]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

E. B. Saloman, S. C. Ebner, L. R. Hughey, “Radiometry using Synchrotron Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 279, 76 (1981).

Other (9)

G. A. Schott, Electromagnetic Radiation (Cambridge, U.P., London, 1912), Eq. (128), p. 109.

R. P. Madden, “Synchrotron Radiation and Applications,”in X-Ray Spectroscopy.L. V. Azaroff, Ed.(McGraw-Hill, NY, 1974), pp. 338–378.

A. F. J. van Raan, J. P. de Jongh, J. van Eck, “Excitation of Noble Gas Atoms by Electrons with Simultaneous Calibration of the Apparatus,” in Abstracts of Papers, Seventh International Conference on the Physics of Electronic and Atomic Collisions, L. M. Branscomb et al., Eds. (North-Holland, Amsterdam, 1971), pp. 702–704.

R. Kendrick, “A Comparison of Methods for Determining the Second Order Correction to the Detector Efficiency of a VUV Spectrometer,” M.S. Thesis, North Carolina State U. (1984) (unpublished).

J. A. R. Samson, Techniques of Vacuum Ultraviolet Radiation (Pied Publishers, Lincoln, 1967).

EMI GENCOM Inc., Plainview, NY.

Instruments S.A. Jobin-Yvon, Metuchen, NJ.

A. McPherson, “Measurement of the Electron Impact Photoemission Cross Sections of the 92.0 nm and the 93.2 nm Emission Lines of Ar II for the VUV Radiometric Project,” Ph.D. Thesis. North Carolina State U. (1984) (unpublished).

J. Gilmore, Minuteman Laboratories, Inc.; private communication.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Geometrical arrangement of the electron–atom source, the spectrometer entrance slit, and the grating. VUV radiation emitted from a section of electron beam dl enters the spectrometer in a direction characterized by angles α and β.

Fig. 2
Fig. 2

Spectral line shape of the apparatus response function R(α,β,λ,Λ) as measured for the Ar ii λ0= 92.0-nm line at (a) a small spot at the center of the grating (α = β = 0°) and a small spot in one of the corners of the grating (α = β = 5°) and (b) for the electron–atom source in which the whole grating is illuminated, α 1 α 2 β 1 β 2 R ( α , β , λ 0 , Λ ) d β d α ,where the angles α1, α2, β1, and β2 denote angular limits which include the active region of the grating.

Fig. 3
Fig. 3

Calibration beam line at SURF II with spectrometer–detector system.

Fig. 4
Fig. 4

Side view of the multiadjustable manipulator.

Fig. 5
Fig. 5

Top view of the multiadjustable manipulator.

Fig. 6
Fig. 6

Arrangement of the horizontal and vertical rotation axes with respect to the electron-beam axis and the spectrometer entrance slit for (a) the grating grooves oriented perpendicular to the orbital plane of the storage ring and (b) the grating grooves oriented parallel to the orbital plane of the storage ring. The orbital plane of the storage ring lies in the plane defined by the incident beam of synchrotron radiation and the horizontal axis.

Fig. 7
Fig. 7

Relative electron impact photoemission cross section σλ0 for the 92-nm Ar ii line vs the width ws of the entrance slit of the spectrometer. The width of the exit slit was also set at ws. The error bars indicate the statistical uncertainty in the electron–atom source signal Sea0). The polarization fraction Π is zero for this transition. The electron energy was set at the nominal value of 300 eV. The average of the four measurements was normalized to unity for comparison.

Fig. 8
Fig. 8

Relative electron-impact photoemission cross section αλ0 for the 92 -nm Ar ii line vs the distance d1 between the electron–atom source and the entrance slit to the spectrometer and the electron–atom source signal Sea0) vs d1. The average of the σλ0 measurements was normalized to unity for comparison.

Fig. 9
Fig. 9

Absolute average response function R(α,β,λ,Λ)av vs spectrometer setting Λ at the center of the grating, i.e., α = β = 0°, for radiation polarized parallel (∥) and perpendicular (⊥) to the grating grooves. Note the large difference in the detection efficiency for the two polarizations. This measurement was made using synchrotron radiation produced by 282-MeV electrons and has not been corrected for contributions from multiple-order dispersion.

Fig. 10
Fig. 10

Absolute average response function R(α,β,λ,Λ)av vs spectrometer setting for two different positions on the grating. The pair of angles α = β = 0° corresponds to the center of the grating, whereas α = β = 5° corresponds to one corner of the active area of the grating. The measurement was made using synchrotron radiation polarized perpendicular to the grating grooves. Note that the two curves cross at 85 nm. See caption for Fig. 9 for additional details.

Fig. 11
Fig. 11

Map of the relative average apparatus response function R(α,β,λ,Λ)av vs position on the grating surface. The effective height h = 20 mm and width w = 30 mm of the active area of the grating are indicated. The grooves of the grating are parallel to the h axis. The orientation of the polarization of the incident radiation to the grooves is indicated by ∥ or ⊥. The spectrometer setting A was set as follows: (a) and (b) 46 nm; (c) and (d) 57.8 nm; (e) and (f) 60.8 nm; (g) and (h) 92.0 nm; and (i) and (j) 12.6 nm. See caption for Fig. 9 for additional details.

Fig. 12
Fig. 12

Signal from radiation passing through the spectrometer at the center of the grating vs spectrometer setting Λ for incident synchrotron radiation produced by 282-MeV electrons with an Al filter positioned in front of the spectrometer entrance slit. The radiation is polarized parallel to the grating. The Al foil had a surface density of 22 μg/cm2, which corresponds to a thickness of ∼82 nm.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

N λ 0 ( E , θ ) = 3 4 π 1 λ 0 ( E ) cos 2 θ 3 λ 0 ( E ) σ λ 0 ( E ) n i ,
π λ 0 ( E ) = N λ 0 ( E , 90 ° ) N λ 0 ( E , 90 ° ) N λ 0 ( E , 90 ° ) + N λ 0 ( E , 90 ° ) ,
N = ( 1 2 ) N ,
N = ( 1 + 2 ) N .
C e a ( λ 0 , λ ) = N Δ Ω R ( α , β , λ 0 , Λ ) dld Ω + N Δ Ω R ( α , β , λ 0 , Λ ) dld Ω ,
d Ω = d w s d h ( tan 2 α + sec 2 β ) 3 / 2 d 1 d 2 .
dhdl = d 1 d 2 cos 2 α cos 2 β d α d β .
C e a ( λ 0 , Λ ) = N ω s α 1 α 2 β 1 β 2 g ( α , β ) R ( α , β , λ 0 , Λ ) d β d α + N ω s α 1 α 2 β 1 β 2 g ( α , β ) R ( α , β , λ 0 , Λ ) d β d α ,
g ( α , β ) = sec 2 α sec 2 β ( tan 2 α + sec 2 β ) 3 / 2 ,
S e a ( λ 0 ) = 0 C e a ( λ 0 , λ Λ ) d Λ .
S e a ( λ 0 ) = N [ 1 π 2 ω s α 1 α 2 β 1 β 2 0 g ( α , β ) R ( α , β , λ 0 , Λ ) d Λ d β d α + 1 + π 2 ω s α 1 α 2 β 1 β 2 0 g ( α , β ) R ( α , β , λ 0 , Λ ) d Λ d β d α ] .
C j syn ( α , β , Λ 0 ) = 0 F j ( λ ) R j ( α , β , λ , Λ 0 ) d λ ,
F ( λ ) = i s λ Δ Φ ψ 0 + ψ 0 I ( λ , ψ ) cos ψ d ψ ,
F j ( λ ) = i s λ Δ Φ j 2 ψ 0 j I ( λ , 0 ) .
Δ Φ = w a / d a ,
2 ψ 0 = ( w s cos β ) / d s ,
Δ Φ = ( w s cos β ) / d s ,
2 ψ 0 = w a / d a .
F j ( λ ) = i s λ w a w s cos β d a d s I ( λ , 0 ) .
S j syn ( Λ 0 ) = Λ 0 α 1 α 2 β 1 β 2 C j syn ( α , β , Λ 0 ) d β d α .
S j syn ( Λ 0 ) = i s w a w s d a d s I ( Λ 0 , 0 ) × α 1 α 2 β 1 β 2 0 R j ( α , β , λ , Λ 0 ) cos β d λ d β d α .
R j ( α , β , λ , Λ ) = R j ( α , β , λ Λ , λ + Λ 2 ) .
0 R j ( α , β , λ 0 Λ ) d Λ = 0 R j ( α , β , λ , Λ 0 ) d λ ,
N = w a I ( Λ 0 , 0 ) S e a ( λ 0 ) d a d s [ 1 2 i s S syn ( Λ 0 ) + 1 + 2 i s S syn ( Λ 0 ) ] ,
R ( α , β , λ , Λ ) av = 0 R ( α , β , λ , Λ ) d λ Δ Λ ,
0 u R ( α , β , λ , Λ ) d λ
α 1 α 2 β 1 β 2 R ( α , β , λ , Λ ) d β d α
α 1 α 2 β 1 β 2 R ( α , β , λ 0 , Λ ) d β d α ,

Metrics