Abstract

A Sagnac interferometer (SI) has been constructed with a mode-locked Nd3+:YAG laser as its source. The advantages in pulsed laser interferometry of using a SI over a Mach-Zehnder interferometer are analyzed. The autostability property of SI is experimentally demonstrated. Applications of an SI to light-induced index of refraction change measurements and to the picosecond optical switching are discussed. Experimental results are presented.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, “Temporal Filtering Properties of Holograms,” Appl. Opt. 6, 857 (1967).
    [CrossRef] [PubMed]
  2. J. D. Redman, “Holographic Velocity Measurement,” J. Sci. Instrum. 44, 1032 (1967).
    [CrossRef]
  3. D. T. Atwood, L. W. Coleman, “Microscopic Interferometry of Laser-Produced Plasma,” Appl. Phys. Lett. 24, 408 (1974).
    [CrossRef]
  4. H. Schmidt, H. Salzmann, H. Strohwald, “Interferometry Using Subnanosecond Pulses from TEA Nitrogen Laser,” Appl. Opt. 14, 2250 (1975).
    [CrossRef] [PubMed]
  5. H. Bjelkhagen, “Pulsed Sandwich Hologram Interferometry,” J. Opt. Soc. Am. 67, 1433 (1977).
  6. R. Kristal, “Pulsed HF Laser Holographic Interferometry,” Appl. Opt. 14, 628 (1975).
    [CrossRef] [PubMed]
  7. J-M. Halbout, C. L. Tang, “Femtosecond Interferometry for Nonlinear Optics,” Appl. Phys. Lett. 40, 765 (1982).
    [CrossRef]
  8. P. Shajenko, E. L. Green, “Signal Stabilization of Optical Interferometer Hydrophones by Tuning the Light Source,” Appl. Opt. 19, 1895 (1980).
    [CrossRef]
  9. A. Olsson, C. L. Tang, E. L. Green, “Active Stabilization of a Michelson Interferometer by an Electrooptically Tuned Laser,” Appl. Opt. 19, 1897 (1980).
    [CrossRef] [PubMed]
  10. E. J. Post, “Sagnac Effect,” Rev. Mod. Phys. 19, 475 (1967).
    [CrossRef]
  11. A. E. Siegman, “An Antiresonant Ring Interferometer for Coupled Laser Cavities, Laser Output Coupling, Mode Locking, and Cavity Dumping,” IEEE J. Quantum Electron. QE-9, 247 (1973).
    [CrossRef]
  12. R. Trutna, A. E. Siegman, “Laser Cavity Dumping Using an Antiresonant Ring,” IEEE J. Quantum Electron. QE-13, 955 (1977).
    [CrossRef]
  13. K. Otsuka, “Nonlinear Antiresonant Ring Interferometer,” Opt. Lett. 8, 471 (1983).
    [CrossRef] [PubMed]
  14. P. D. Maker, R. W. Terhune, C. M. Savage, “Intensity-dependent Changes in Refractive Index of Liquid,” Phys. Rev. Lett. 12, 507 (1964).
    [CrossRef]
  15. K. Sala, M. C. Richardson, “Optical Kerr Effect Induced by Ultrashort Laser Pulses,” Phys. Rev. A 12, 1036 (1975).
    [CrossRef]
  16. M. A. Duguay, J. W. Hansen, “An Ultrafast Light Gate,” Appl. Phys. Lett. 15, 192 (1969).
    [CrossRef]
  17. P. P. Ho, R. R. Alfano, “Optical Kerr Effect in Liquid,” Phys. Rev. A 20, 2170 (1979).
    [CrossRef]
  18. P. W. Smith, W. J. Tomlinson, “Bistable Optical Devices, Promise Subpicosecond Switching,” IEEE Spectrum 8, 26 (June1981).

1983 (1)

1982 (1)

J-M. Halbout, C. L. Tang, “Femtosecond Interferometry for Nonlinear Optics,” Appl. Phys. Lett. 40, 765 (1982).
[CrossRef]

1981 (1)

P. W. Smith, W. J. Tomlinson, “Bistable Optical Devices, Promise Subpicosecond Switching,” IEEE Spectrum 8, 26 (June1981).

1980 (2)

1979 (1)

P. P. Ho, R. R. Alfano, “Optical Kerr Effect in Liquid,” Phys. Rev. A 20, 2170 (1979).
[CrossRef]

1977 (2)

H. Bjelkhagen, “Pulsed Sandwich Hologram Interferometry,” J. Opt. Soc. Am. 67, 1433 (1977).

R. Trutna, A. E. Siegman, “Laser Cavity Dumping Using an Antiresonant Ring,” IEEE J. Quantum Electron. QE-13, 955 (1977).
[CrossRef]

1975 (3)

1974 (1)

D. T. Atwood, L. W. Coleman, “Microscopic Interferometry of Laser-Produced Plasma,” Appl. Phys. Lett. 24, 408 (1974).
[CrossRef]

1973 (1)

A. E. Siegman, “An Antiresonant Ring Interferometer for Coupled Laser Cavities, Laser Output Coupling, Mode Locking, and Cavity Dumping,” IEEE J. Quantum Electron. QE-9, 247 (1973).
[CrossRef]

1969 (1)

M. A. Duguay, J. W. Hansen, “An Ultrafast Light Gate,” Appl. Phys. Lett. 15, 192 (1969).
[CrossRef]

1967 (3)

J. D. Redman, “Holographic Velocity Measurement,” J. Sci. Instrum. 44, 1032 (1967).
[CrossRef]

E. J. Post, “Sagnac Effect,” Rev. Mod. Phys. 19, 475 (1967).
[CrossRef]

J. W. Goodman, “Temporal Filtering Properties of Holograms,” Appl. Opt. 6, 857 (1967).
[CrossRef] [PubMed]

1964 (1)

P. D. Maker, R. W. Terhune, C. M. Savage, “Intensity-dependent Changes in Refractive Index of Liquid,” Phys. Rev. Lett. 12, 507 (1964).
[CrossRef]

Alfano, R. R.

P. P. Ho, R. R. Alfano, “Optical Kerr Effect in Liquid,” Phys. Rev. A 20, 2170 (1979).
[CrossRef]

Atwood, D. T.

D. T. Atwood, L. W. Coleman, “Microscopic Interferometry of Laser-Produced Plasma,” Appl. Phys. Lett. 24, 408 (1974).
[CrossRef]

Bjelkhagen, H.

H. Bjelkhagen, “Pulsed Sandwich Hologram Interferometry,” J. Opt. Soc. Am. 67, 1433 (1977).

Coleman, L. W.

D. T. Atwood, L. W. Coleman, “Microscopic Interferometry of Laser-Produced Plasma,” Appl. Phys. Lett. 24, 408 (1974).
[CrossRef]

Duguay, M. A.

M. A. Duguay, J. W. Hansen, “An Ultrafast Light Gate,” Appl. Phys. Lett. 15, 192 (1969).
[CrossRef]

Goodman, J. W.

Green, E. L.

Halbout, J-M.

J-M. Halbout, C. L. Tang, “Femtosecond Interferometry for Nonlinear Optics,” Appl. Phys. Lett. 40, 765 (1982).
[CrossRef]

Hansen, J. W.

M. A. Duguay, J. W. Hansen, “An Ultrafast Light Gate,” Appl. Phys. Lett. 15, 192 (1969).
[CrossRef]

Ho, P. P.

P. P. Ho, R. R. Alfano, “Optical Kerr Effect in Liquid,” Phys. Rev. A 20, 2170 (1979).
[CrossRef]

Kristal, R.

Maker, P. D.

P. D. Maker, R. W. Terhune, C. M. Savage, “Intensity-dependent Changes in Refractive Index of Liquid,” Phys. Rev. Lett. 12, 507 (1964).
[CrossRef]

Olsson, A.

Otsuka, K.

Post, E. J.

E. J. Post, “Sagnac Effect,” Rev. Mod. Phys. 19, 475 (1967).
[CrossRef]

Redman, J. D.

J. D. Redman, “Holographic Velocity Measurement,” J. Sci. Instrum. 44, 1032 (1967).
[CrossRef]

Richardson, M. C.

K. Sala, M. C. Richardson, “Optical Kerr Effect Induced by Ultrashort Laser Pulses,” Phys. Rev. A 12, 1036 (1975).
[CrossRef]

Sala, K.

K. Sala, M. C. Richardson, “Optical Kerr Effect Induced by Ultrashort Laser Pulses,” Phys. Rev. A 12, 1036 (1975).
[CrossRef]

Salzmann, H.

Savage, C. M.

P. D. Maker, R. W. Terhune, C. M. Savage, “Intensity-dependent Changes in Refractive Index of Liquid,” Phys. Rev. Lett. 12, 507 (1964).
[CrossRef]

Schmidt, H.

Shajenko, P.

Siegman, A. E.

R. Trutna, A. E. Siegman, “Laser Cavity Dumping Using an Antiresonant Ring,” IEEE J. Quantum Electron. QE-13, 955 (1977).
[CrossRef]

A. E. Siegman, “An Antiresonant Ring Interferometer for Coupled Laser Cavities, Laser Output Coupling, Mode Locking, and Cavity Dumping,” IEEE J. Quantum Electron. QE-9, 247 (1973).
[CrossRef]

Smith, P. W.

P. W. Smith, W. J. Tomlinson, “Bistable Optical Devices, Promise Subpicosecond Switching,” IEEE Spectrum 8, 26 (June1981).

Strohwald, H.

Tang, C. L.

Terhune, R. W.

P. D. Maker, R. W. Terhune, C. M. Savage, “Intensity-dependent Changes in Refractive Index of Liquid,” Phys. Rev. Lett. 12, 507 (1964).
[CrossRef]

Tomlinson, W. J.

P. W. Smith, W. J. Tomlinson, “Bistable Optical Devices, Promise Subpicosecond Switching,” IEEE Spectrum 8, 26 (June1981).

Trutna, R.

R. Trutna, A. E. Siegman, “Laser Cavity Dumping Using an Antiresonant Ring,” IEEE J. Quantum Electron. QE-13, 955 (1977).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (3)

J-M. Halbout, C. L. Tang, “Femtosecond Interferometry for Nonlinear Optics,” Appl. Phys. Lett. 40, 765 (1982).
[CrossRef]

D. T. Atwood, L. W. Coleman, “Microscopic Interferometry of Laser-Produced Plasma,” Appl. Phys. Lett. 24, 408 (1974).
[CrossRef]

M. A. Duguay, J. W. Hansen, “An Ultrafast Light Gate,” Appl. Phys. Lett. 15, 192 (1969).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. E. Siegman, “An Antiresonant Ring Interferometer for Coupled Laser Cavities, Laser Output Coupling, Mode Locking, and Cavity Dumping,” IEEE J. Quantum Electron. QE-9, 247 (1973).
[CrossRef]

R. Trutna, A. E. Siegman, “Laser Cavity Dumping Using an Antiresonant Ring,” IEEE J. Quantum Electron. QE-13, 955 (1977).
[CrossRef]

IEEE Spectrum (1)

P. W. Smith, W. J. Tomlinson, “Bistable Optical Devices, Promise Subpicosecond Switching,” IEEE Spectrum 8, 26 (June1981).

J. Opt. Soc. Am. (1)

H. Bjelkhagen, “Pulsed Sandwich Hologram Interferometry,” J. Opt. Soc. Am. 67, 1433 (1977).

J. Sci. Instrum. (1)

J. D. Redman, “Holographic Velocity Measurement,” J. Sci. Instrum. 44, 1032 (1967).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (2)

K. Sala, M. C. Richardson, “Optical Kerr Effect Induced by Ultrashort Laser Pulses,” Phys. Rev. A 12, 1036 (1975).
[CrossRef]

P. P. Ho, R. R. Alfano, “Optical Kerr Effect in Liquid,” Phys. Rev. A 20, 2170 (1979).
[CrossRef]

Phys. Rev. Lett. (1)

P. D. Maker, R. W. Terhune, C. M. Savage, “Intensity-dependent Changes in Refractive Index of Liquid,” Phys. Rev. Lett. 12, 507 (1964).
[CrossRef]

Rev. Mod. Phys. (1)

E. J. Post, “Sagnac Effect,” Rev. Mod. Phys. 19, 475 (1967).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Vibrational stabilization comparisons between different arrangements of interferometers: (a) a rectangular SI; (b) a rectangular MZI; (c) a triangular SI: M, mirror; BS, beam splitter; Δx, Δy, translational shift of a mirror caused by vibration; and Ii;Io, input and output intensities.

Fig. 2
Fig. 2

Calculated curves for light-induced index of refraction changes (absolute value) in CS2. Solid (dashed) lines are for the changes in the parallel (perpendicular) directions to the laser polarization field. τ0′ is the ratio of the material orientational relaxation time τ0 over the laser pulse width τt, and τ0′ is 0 for (a) and 10 for (b).

Fig. 3
Fig. 3

Experimental setup. The input pulse contains two wavelengths at 1064 (532) nm and M, mirror; BS, beam splitter; DP, delay prism; F, filter. λ/2 plate, halfwave plate, A, adjustable aperture; and D, detector.

Fig. 4
Fig. 4

Output intensity curve obtained by scanning the overlap between pulses at CS2 cell vs delay time.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δ l s = | l 1 l 2 + 2 ( Δ y Δ x ) | = 2 | Δ y Δ x | .
Δ l m = | l 1 l 2 + Δ y | = | Δ y | .
Δ ϕ = 1 c ( Δ ln ω + Δ nl ω + Δ ω nl ) ,
Ω max < c l p ,
E ( z , t ) = 2 E 0 exp [ 1 τ t 2 ( t z υ ) 2 ] cos [ ω ( t z υ ) ] ,
E 2 ( z , t ) = E 0 2 exp [ 2 τ t 2 ( t z υ ) 2 ] .
Δ n = 3 2 n 2 e E 2 ( z , t ) + n 2 0 π τ t 3 2 τ 0 E 2 ( z , t ) × erfc [ 2 τ t ( z υ t ) + τ t 8 τ 0 ] × exp [ 2 τ t 2 ( t z υ ) 2 + z υ t υ τ 0 + τ t 2 8 τ 0 2 ] ,
Δ n = ½ n 2 e E 2 ( z , t ) n 2 0 π τ t 6 2 τ 0 E 2 ( z , t ) × erfc [ 2 τ t ( z υ t ) + τ t 8 τ 0 ] × exp [ 2 τ t 2 ( t z υ ) 2 + z υ t υ τ 0 + τ t 2 8 τ 0 2 ] ,
Δ n n 2 E 0 2 = ( 3 n 2 e 2 n 2 + 2 n c 2 0 3 n 2 ) exp ( t 2 ) τ 0 1 , 3 n 2 e 2 n 2 exp ( t 2 ) + 2 n c 2 0 3 n 2 τ 0 t exp [ ( s 2 + t s τ 0 ) ] d s τ 0 1 3 n 2 e 2 n 2 exp ( t 2 ) n c 2 0 π 3 n 2 τ 0 exp ( t τ 0 + 1 4 τ 0 2 ) × erfc ( t + 1 2 τ 0 ) τ 0 1 ,
Δ n n 2 E 0 2 = ( n 2 e 2 n 2 n c 2 0 3 n 2 ) exp ( t 2 ) τ 1 , n 2 e 2 n 2 exp ( t 2 ) n c 2 0 3 n 2 τ 0 t exp [ ( s 2 + t s τ 0 ) ] d s τ 1 , n 2 e 2 n 2 exp ( t 2 ) n c 2 0 π 6 n 2 τ 0 exp ( t τ 0 + 1 4 τ 0 ) × erfc ( t + 1 2 τ 0 ) τ 1 ,

Metrics