Abstract

Relying on van de Hulst’s localization principle, a localized approximation to the generalized Lorenz-Mie theory is introduced. The validation of this simple approximation is obtained from numerical comparisons the Rayleigh-Gans theory. Other comparisons concerning scattering profiles are carried out first with theoretical data published in the literature and later with experimental measurements. Original results are given for coal particles as an example of the versatility of the method.

© 1986 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription