Abstract

This paper describes an electrically passive fiber-optic interferometer which uses dual frequency-modulated laser diodes. Experimental results show that this type of interferometer can attain a displacement range of 100 μm with subnanometer resolution. This technique can serve as the basis for a number of high-precision fiber-optic sensors.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Beheim, “Remote Displacement Measurement Using a Passive Interferometer with a Fiber-Optic Link,” Appl. Opt. 24, 2335 (1985).
    [CrossRef] [PubMed]
  2. D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudoheterodyne Detection Scheme for Optical Interferometers,” Electron. Lett. 18, 1081 (1982).
    [CrossRef]
  3. A. Dandridge, A. B. Tveten, “Phase Compensation in Interferometric Fiber-Optic Sensors,” Opt. Lett. 7, 279 (1982).
    [CrossRef] [PubMed]
  4. A. Dandridge, L. Goldberg, “Current-Induced Frequency Modulation in Diode Lasers,” Electron. Lett. 18, 302 (1982).
    [CrossRef]
  5. B. Y. Kim, H. J. Shaw, “Phase-Reading, All-Fiber-Optic Gyroscope,” Opt. Lett. 9, 378 (1984).
    [CrossRef] [PubMed]
  6. M. Johnson, “Stabilized Fiber-End Retroflecting Interferometer,” Appl. Opt. 23, 2629 (1984).
    [CrossRef] [PubMed]

1985 (1)

1984 (2)

1982 (3)

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudoheterodyne Detection Scheme for Optical Interferometers,” Electron. Lett. 18, 1081 (1982).
[CrossRef]

A. Dandridge, L. Goldberg, “Current-Induced Frequency Modulation in Diode Lasers,” Electron. Lett. 18, 302 (1982).
[CrossRef]

A. Dandridge, A. B. Tveten, “Phase Compensation in Interferometric Fiber-Optic Sensors,” Opt. Lett. 7, 279 (1982).
[CrossRef] [PubMed]

Beheim, G.

Corke, M.

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudoheterodyne Detection Scheme for Optical Interferometers,” Electron. Lett. 18, 1081 (1982).
[CrossRef]

Dandridge, A.

A. Dandridge, L. Goldberg, “Current-Induced Frequency Modulation in Diode Lasers,” Electron. Lett. 18, 302 (1982).
[CrossRef]

A. Dandridge, A. B. Tveten, “Phase Compensation in Interferometric Fiber-Optic Sensors,” Opt. Lett. 7, 279 (1982).
[CrossRef] [PubMed]

Goldberg, L.

A. Dandridge, L. Goldberg, “Current-Induced Frequency Modulation in Diode Lasers,” Electron. Lett. 18, 302 (1982).
[CrossRef]

Jackson, D. A.

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudoheterodyne Detection Scheme for Optical Interferometers,” Electron. Lett. 18, 1081 (1982).
[CrossRef]

Johnson, M.

Jones, J. D. C.

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudoheterodyne Detection Scheme for Optical Interferometers,” Electron. Lett. 18, 1081 (1982).
[CrossRef]

Kersey, A. D.

D. A. Jackson, A. D. Kersey, M. Corke, J. D. C. Jones, “Pseudoheterodyne Detection Scheme for Optical Interferometers,” Electron. Lett. 18, 1081 (1982).
[CrossRef]

Kim, B. Y.

Shaw, H. J.

Tveten, A. B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the dual-wavelength interferometer.

Fig. 2
Fig. 2

Schematic diagram of the phase-measurement circuit (PMC).

Fig. 3
Fig. 3

Interferometer signals for single-mode input fibers and a multimode output fiber. The OPD, L is 2.5 mm. The phase shifts, θ1 and θ2, are 180° and 270°, respectively. Signals (a)–(c); Z(t), V1(t), and V2(t). Optical intensity increases in the downward direction.

Fig. 4
Fig. 4

Interferometer signal V1(t) laser diode for a single-mode and multimode input fibers. The OPD, L is 2.5 mm.

Fig. 5
Fig. 5

Absolute values of the PMC outputs, θ1 and Δθ, as a function of VPZT. Signal θ1 has the shorter period.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S ( t ) = 1 + η cos [ θ + φ sin ( ω t ) ] ,
φ = 2 π Δ F L / c .
I 1 ( t ) = [ K 1 + M 1 sin ( ω t + Δ ) ] { 1 + sgn [ cos ( ω t ) ] } 2 , I 2 ( t ) = [ K 2 - M 2 sin ( ω t + Δ ) ] { 1 - sgn [ cos ( ω t ) ] } 2 ,
Δ θ = θ 2 - θ 1 = 2 π ( 1 λ 2 - 1 λ 1 ) L .
L max = | λ 1 λ 2 λ 1 - λ 2 | .

Metrics