Abstract

We describe the experimental results on the observation of propagating waves in integrated optical waveguides and circuits formed by ion exchange in glass using a microcomputer-assisted TV camera. The observed light intensity profiles are consistent with the predicted ones.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tamir, Integrated Optics (Springer-Verlag, Berlin, 1979).
  2. T. J. Cullen, C. D. W. Wilkinson, “Radiation Losses from Single-Mode Optical Y Junctions Formed by Silver-Ion Exchanged in Glass,” Opt. Lett. 9, 134 (1984).
    [Crossref] [PubMed]
  3. Y. Okamura, S. Yoshinaka, S. Yamamoto, “Measuring Mode Propagation Losses of Integrated Optical Waveguides: a Simple Method,” Appl. Opt. 22, 3892 (1983).
    [Crossref] [PubMed]
  4. Y. Okamura, S. Yamamoto, “Losses at Corner Bending in Optical Waveguides: an in situ Measurement Method,” Appl. Opt. 23, 3506 (1984).
    [Crossref] [PubMed]
  5. Y. Okamura, S. Sato, S. Yamamoto, “Simple Method of Measuring Propagation Properties of Integrated Optical Waveguides: an Improvement,” Appl. Opt. 24, 57 (1985).
    [Crossref] [PubMed]
  6. T. G. Giallorenzi, E. J. West, R. Kirk, R. Ginther, R. A. Andrews, “Optical Waveguides Formed by Thermal Migration of Ions in Glass,” Appl. Opt. 12, 1240 (1973).
    [Crossref] [PubMed]
  7. A. Neyer, “Integrated-Optical Multichannel Wavelength Multiplexer for Monomode Systems,” Electron. Lett. 20, 744 (1984).
    [Crossref]
  8. P. Danielsen, “Two-Dimensional Propagating Beam Analysis of an Electrooptic Waveguide Modulator,” IEEE J. Quantum Electron. QE-20, 1093 (1984).
    [Crossref]

1985 (1)

1984 (4)

Y. Okamura, S. Yamamoto, “Losses at Corner Bending in Optical Waveguides: an in situ Measurement Method,” Appl. Opt. 23, 3506 (1984).
[Crossref] [PubMed]

A. Neyer, “Integrated-Optical Multichannel Wavelength Multiplexer for Monomode Systems,” Electron. Lett. 20, 744 (1984).
[Crossref]

P. Danielsen, “Two-Dimensional Propagating Beam Analysis of an Electrooptic Waveguide Modulator,” IEEE J. Quantum Electron. QE-20, 1093 (1984).
[Crossref]

T. J. Cullen, C. D. W. Wilkinson, “Radiation Losses from Single-Mode Optical Y Junctions Formed by Silver-Ion Exchanged in Glass,” Opt. Lett. 9, 134 (1984).
[Crossref] [PubMed]

1983 (1)

1973 (1)

Andrews, R. A.

Cullen, T. J.

Danielsen, P.

P. Danielsen, “Two-Dimensional Propagating Beam Analysis of an Electrooptic Waveguide Modulator,” IEEE J. Quantum Electron. QE-20, 1093 (1984).
[Crossref]

Giallorenzi, T. G.

Ginther, R.

Kirk, R.

Neyer, A.

A. Neyer, “Integrated-Optical Multichannel Wavelength Multiplexer for Monomode Systems,” Electron. Lett. 20, 744 (1984).
[Crossref]

Okamura, Y.

Sato, S.

Tamir, T.

T. Tamir, Integrated Optics (Springer-Verlag, Berlin, 1979).

West, E. J.

Wilkinson, C. D. W.

Yamamoto, S.

Yoshinaka, S.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Apparatus for observing wave propagation in optical waveguides.

Fig. 2
Fig. 2

(a) Wave propagation in single-mode channel potassium-ion exchanged glass waveguide and (b) light intensity as a function of propagation length.

Fig. 3
Fig. 3

Wave propagation in multimode channel potassium-ion exchanged glass waveguide.

Fig. 4
Fig. 4

Light streak on a monitor TV for a multimode channel waveguide.

Fig. 5
Fig. 5

Y-branch waveguide with an input two-mode waveguide and two single-mode waveguides.

Fig. 6
Fig. 6

Optical fields propagating in the Y-branch waveguide for (a) the fundamental mode excitation, (b) the simultaneous excitation of the fundamental and the first-order modes, and (c) the same as that of (b), but the phase of the first-order mode is 180° different from that of (b).

Fig. 7
Fig. 7

Guided-wave-type Mach-Zehnder interferometer for observation.

Fig. 8
Fig. 8

Three-dimensional wave propagation profile in Mach-Zehnder interferometer for (a) input power divider, (b) parallel guides, and (c) output power combiner.

Fig. 9
Fig. 9

Light streak on a monitor TV for (a) input power divider and (b) parallel waveguides.

Metrics