Abstract

Infrared (10.6-μm) dynamic holograms are obtained on a recording medium consisting of a thin oil film on a glass substrate. Reconstruction with visible light (0.63 μm) permits copying the initial hologram on a photographic plate. Any subsequent displacement of the object modifies the corresponding reconstructed wave at the recording medium, thereby creating a characteristic visible interferogram. Analysis of the double image in copy holograms together with fringe localization and visibility did not show stringent setup conditions. Experimental results are well related to various objects and displacements while the long wavelength (≃ 10 μm) used offers the advantage of large displacements or wavefronts deformation measurability and considerably decreases the setup sensitivity to vibrations.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Viénot, “Sur quelques essais d’interprétation quantitative des hologrammes dans l’étude des contraintes,” Nouv. Rev. Opt. Appl. 1, 91 (1970).
    [CrossRef]
  2. J. D. Briers, “The Interpretation of Holographic Interferograms,” Opt. Quantum Electron. 8, 469 (1976).
    [CrossRef]
  3. K. G. Harding, J. S. Harris, “Projection Moire Interferometer for Vibration Analysis,” Appl. Opt. 22, 856 (1983).
    [CrossRef] [PubMed]
  4. A. A. Friesem, J. L. Walker, “Experimental Investigation of Some Anomalies in Photographic Plates,” Appl. Opt. 8, 1504 (1969).
    [CrossRef] [PubMed]
  5. K. S. Pennington, J. S. Harper, “Techniques for Producing Low-Noise Improved-Efficiency Holograms,” Appl. Opt. 9, 1643 (1970).
    [CrossRef] [PubMed]
  6. C. M. Vest, Holographic Interferometry (Wiley, New York, 1974).
  7. K. A. Stetson, R. L. Powell, “Interferometric Hologram Evaluation and Real-Time Vibration Analysis of Diffuse Objects,” J. Opt. Soc. Am. 55, 1694 (1965).
    [CrossRef]
  8. R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).
  9. M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, “Holographie en infrarouge sur de minces couches d’huile,” Appl. Opt. 17, 3622 (1978).
    [CrossRef] [PubMed]
  10. M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, “Holographic Nondestructive Inspection at 10.6 μm,” in Proceedings, International Conference on Lasers, Orlando (1978), p. 666.
  11. J. Lewandowski, B. Mongeau, M. Cormier, “Real-Time Interferometry Using IR Holography on Oil Films,” Appl. Opt. 23, 242 (1984).
    [CrossRef] [PubMed]
  12. D. B. Brumm, “Copying Holograms,” Appl. Opt. 5, 1946 (1966).
    [CrossRef] [PubMed]
  13. F. Ledoyen, M. Cormier, “Comportement d’une mince couche d’huile irradiée en infrarouge,” Can. J. Phys. 63, 207 (1984).
  14. D. B. Brumm, “Double Images in Copy Holograms,” Appl. Opt. 6, 588 (1967).
    [CrossRef] [PubMed]
  15. A. A. Friesem, A. Kozma, G. F. Adams, “Recording Parameters of Spatially Modulated Coherent Wavefronts,” Appl. Opt. 6, 851 (1967).
    [CrossRef] [PubMed]
  16. J. C. Urbach, R. W. Meier, “Holographic Recording Materials,” Proc. Soc. Photo-Opt. Instrum. Eng. 15, 55 (1968).

1984 (2)

J. Lewandowski, B. Mongeau, M. Cormier, “Real-Time Interferometry Using IR Holography on Oil Films,” Appl. Opt. 23, 242 (1984).
[CrossRef] [PubMed]

F. Ledoyen, M. Cormier, “Comportement d’une mince couche d’huile irradiée en infrarouge,” Can. J. Phys. 63, 207 (1984).

1983 (1)

1978 (1)

1976 (1)

J. D. Briers, “The Interpretation of Holographic Interferograms,” Opt. Quantum Electron. 8, 469 (1976).
[CrossRef]

1970 (2)

J. C. Viénot, “Sur quelques essais d’interprétation quantitative des hologrammes dans l’étude des contraintes,” Nouv. Rev. Opt. Appl. 1, 91 (1970).
[CrossRef]

K. S. Pennington, J. S. Harper, “Techniques for Producing Low-Noise Improved-Efficiency Holograms,” Appl. Opt. 9, 1643 (1970).
[CrossRef] [PubMed]

1969 (1)

1968 (1)

J. C. Urbach, R. W. Meier, “Holographic Recording Materials,” Proc. Soc. Photo-Opt. Instrum. Eng. 15, 55 (1968).

1967 (2)

1966 (1)

1965 (1)

Adams, G. F.

Beaulieu, R.

M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, “Holographie en infrarouge sur de minces couches d’huile,” Appl. Opt. 17, 3622 (1978).
[CrossRef] [PubMed]

M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, “Holographic Nondestructive Inspection at 10.6 μm,” in Proceedings, International Conference on Lasers, Orlando (1978), p. 666.

Blanchard, M.

M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, “Holographie en infrarouge sur de minces couches d’huile,” Appl. Opt. 17, 3622 (1978).
[CrossRef] [PubMed]

M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, “Holographic Nondestructive Inspection at 10.6 μm,” in Proceedings, International Conference on Lasers, Orlando (1978), p. 666.

Briers, J. D.

J. D. Briers, “The Interpretation of Holographic Interferograms,” Opt. Quantum Electron. 8, 469 (1976).
[CrossRef]

Brumm, D. B.

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).

Collier, R. J.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).

Cormier, M.

J. Lewandowski, B. Mongeau, M. Cormier, “Real-Time Interferometry Using IR Holography on Oil Films,” Appl. Opt. 23, 242 (1984).
[CrossRef] [PubMed]

F. Ledoyen, M. Cormier, “Comportement d’une mince couche d’huile irradiée en infrarouge,” Can. J. Phys. 63, 207 (1984).

M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, “Holographie en infrarouge sur de minces couches d’huile,” Appl. Opt. 17, 3622 (1978).
[CrossRef] [PubMed]

M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, “Holographic Nondestructive Inspection at 10.6 μm,” in Proceedings, International Conference on Lasers, Orlando (1978), p. 666.

Friesem, A. A.

Harding, K. G.

Harper, J. S.

Harris, J. S.

Kozma, A.

Ledoyen, F.

F. Ledoyen, M. Cormier, “Comportement d’une mince couche d’huile irradiée en infrarouge,” Can. J. Phys. 63, 207 (1984).

Lewandowski, J.

Lin, L. H.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).

Meier, R. W.

J. C. Urbach, R. W. Meier, “Holographic Recording Materials,” Proc. Soc. Photo-Opt. Instrum. Eng. 15, 55 (1968).

Mongeau, B.

Pennington, K. S.

Powell, R. L.

Rioux, M.

M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, “Holographie en infrarouge sur de minces couches d’huile,” Appl. Opt. 17, 3622 (1978).
[CrossRef] [PubMed]

M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, “Holographic Nondestructive Inspection at 10.6 μm,” in Proceedings, International Conference on Lasers, Orlando (1978), p. 666.

Stetson, K. A.

Urbach, J. C.

J. C. Urbach, R. W. Meier, “Holographic Recording Materials,” Proc. Soc. Photo-Opt. Instrum. Eng. 15, 55 (1968).

Vest, C. M.

C. M. Vest, Holographic Interferometry (Wiley, New York, 1974).

Viénot, J. C.

J. C. Viénot, “Sur quelques essais d’interprétation quantitative des hologrammes dans l’étude des contraintes,” Nouv. Rev. Opt. Appl. 1, 91 (1970).
[CrossRef]

Walker, J. L.

Appl. Opt. (8)

Can. J. Phys. (1)

F. Ledoyen, M. Cormier, “Comportement d’une mince couche d’huile irradiée en infrarouge,” Can. J. Phys. 63, 207 (1984).

J. Opt. Soc. Am. (1)

Nouv. Rev. Opt. Appl. (1)

J. C. Viénot, “Sur quelques essais d’interprétation quantitative des hologrammes dans l’étude des contraintes,” Nouv. Rev. Opt. Appl. 1, 91 (1970).
[CrossRef]

Opt. Quantum Electron. (1)

J. D. Briers, “The Interpretation of Holographic Interferograms,” Opt. Quantum Electron. 8, 469 (1976).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. C. Urbach, R. W. Meier, “Holographic Recording Materials,” Proc. Soc. Photo-Opt. Instrum. Eng. 15, 55 (1968).

Other (3)

M. Cormier, M. Blanchard, M. Rioux, R. Beaulieu, “Holographic Nondestructive Inspection at 10.6 μm,” in Proceedings, International Conference on Lasers, Orlando (1978), p. 666.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971).

C. M. Vest, Holographic Interferometry (Wiley, New York, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

Geometrical analysis of the double-image problem (distances and angles are not to scale).

Fig. 3
Fig. 3

Fringe visibility [Eq. (25)].

Fig. 4
Fig. 4

Angular displacement of an IR plane wave.

Fig. 5
Fig. 5

Displacement of an IR point object obtained from a Ge lens.

Fig. 6
Fig. 6

Displacement of an IR diffusing object by IR holographic interferometry.

Fig. 7
Fig. 7

Definition of the coordinates: rotation of the diffusing object. Experimental values are ϕi = 85°3 and ϕs = 99°3.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

I = O 2 + R 2 + O R { exp [ j ( ϕ 0 - ϕ R ) ] + exp [ - j ( ϕ 0 - ϕ R ) ] } .
Δ ϕ = β R O { exp [ j ( ϕ 0 - ϕ R ) ] + exp [ - j ( ϕ 0 - ϕ R ) ] } ,
t RM = exp ( j Δ ϕ ) 1 + j η [ a ( x , y ) + a * ( x , y ) ] ,
A RM ( x , y ) = t RM A c A c + j A c η [ a ( x , y ) + a * ( x , y ) ] .
A C P ( x , y ) = A c + A c η [ A V ( x , y ) + A R ( x , y ) ] ,
I CP ( x , y ) A c 2 + η A c 2 ( A V + A R + A V * + A R * ) .
t CP = t 0 - k I CP T 0 - k η A c 2 ( A V + A R + A V * + A R * ) ,
T 0 = t 0 - k A c 2 ,
A CP = A c + A c η [ A V + A R ] ,
A = t CP A CP .
A T 0 A c + A c η [ T 0 A R - k A c 2 ( A R + A V * ) ] + A c η [ T 0 A V - k A c 2 ( A V + A R * ) ] .
r i = ± μ r 0 ,
θ i = 1 μ ( θ 0 - θ R ) = ± θ 0 R μ ,
θ 0 R = θ 0 - θ R             μ = λ R λ C = 16.75.
δ = x 2 2 ( s + r i - d ) - x 2 2 ( s + r i + d ) d x 2 ( s + r i ) 2 ,
f R = θ 0 R λ R = θ i λ C ,
δ d λ C 2 f R 2 .
θ 0 R = θ 0 - θ R < 5.4 ° .
M = I CP ( max ) - I CP ( min ) I CP ( max ) + I CP ( min ) ,
A V = exp ( j ϕ 1 )             and             A R = exp ( j ϕ 2 ) ,
I CP ( x , y ) = A c 2 [ 1 + 2 η ( cos ϕ 1 + cos ϕ 2 ) ] ,
M = 4 η ,
D = 0.04 M 2 [ 1 - 6.6 ( T 0 - 0.45 ) 2 ] ,
A CP = A c D = 0.20 M [ 1 - 6.6 ( T 0 - 0.45 ) 2 ] 1 / 2 A c ,
A RM = A c · T 0 · η .
C = 2 A RM A CP A RM 2 + A CP 2 , C = 10 T 0 η M [ 1 - 6.6 ( T 0 - 0.45 ) 2 ] 1 / 2 M 2 [ 1 - 6.6 ( T 0 - 0.45 ) 2 ] + 25 T 0 2 η ,
i c = λ R Δ θ 0 R .
h R = - x [ cos ( ϕ s ) sin 2 ( ϕ s ) sin ( ϕ i ) + sin ( ϕ s ) ] ,
h = μ h R = 1.33 x .
i c = λ R α [ sin ( ϕ i ) + sin ( ϕ s ) ] .

Metrics