Abstract

This paper proposes a method for measuring distance larger than the wavelength of light with an interferometer using a laser diode. This method uses the fact that the wavelength of the emitted light of a laser diode varies in proportion to the diode’s injection current. The phase difference between the two interfering beams varies due to the sinusoidal variation of wavelength. The variation of the phase difference is detected by the optical heterodyne method. The magnitude of the variation is proportional to the measuring distance and the light wavelength shift. If the wavelength shift is known, a distance larger than the wavelength can be obtained from measurement of the phase variation. This method is a kind of multiwavelength interferometry using a single light source. We have done some fundamental experiments with this method and have confirmed its applicability to practical applications.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sona, “Beam Modulation Telemetry,” In Laser Handbook, F. T. Arecchi, E. O. Shulz-Dubois, Eds. (North-Holland, Amsterdam, 1972), p. 1469.
  2. M. Born, E. Wolf, “The Method of Excess Fractions,” in Principles of Optics, M. Born, E. Wolf, Eds. (Pergamon, Oxford, 1965), p. 291.
  3. H. Matsumoto, “Length Measurement Using Infrared Two-Wavelength He–Xe Laser Interferometer,” Rev. Sci. Instrum. 53, 641 (1982).
    [CrossRef]
  4. A. F. Fercher, H. Z. Hu, “Two-Wavelength Heterodyne Interferometry,” in Optoelectronics in Engineering, W. Waidelich, Ed. (Springer-Verlag, Berlin, 1984), p. 142.
  5. A. Greve, W. Harth, “Laser-Diode Distance Meter in a KERN DKM 3A Theodolite,” Appl. Opt. 23, 2982 (1984).
    [CrossRef] [PubMed]
  6. K. Saito, R. Ito, “Buried-Heterostructure AlGaAs Lasers,” IEEE J. Quantum Electron. QE-16, 205 (1980).
    [CrossRef]
  7. T. Okoshi, K. Kikuchi, “Frequency Stabilisation of Semiconductor Lasers for Heterodyne-Type Optical Communication Systems,” Electron. Lett. 16, 179 (1980).
    [CrossRef]
  8. J. M. Besson, J. F. Butler, A. R. Calawa, W. Paul, R. H. Rediker, “Pressure-Tuned PbSe Diode Laser,” Appl. Phys. Lett. 7, 206 (1965).
    [CrossRef]
  9. A. R. Calawa, J. O. Dimmock, T. C. Harman, I. Melngailis, “Magnetic Field Dependence of Laser Emission in PbSnSe Diode,” Phys. Rev. Lett. 23, 7 (1969).
    [CrossRef]
  10. N. A. Massie, R. D. Nelson, S. Holly, “High-Performance Real-Time Heterodyne Interferometry,” Appl. Opt. 18, 1797 (1979).
    [CrossRef] [PubMed]

1984 (1)

1982 (1)

H. Matsumoto, “Length Measurement Using Infrared Two-Wavelength He–Xe Laser Interferometer,” Rev. Sci. Instrum. 53, 641 (1982).
[CrossRef]

1980 (2)

K. Saito, R. Ito, “Buried-Heterostructure AlGaAs Lasers,” IEEE J. Quantum Electron. QE-16, 205 (1980).
[CrossRef]

T. Okoshi, K. Kikuchi, “Frequency Stabilisation of Semiconductor Lasers for Heterodyne-Type Optical Communication Systems,” Electron. Lett. 16, 179 (1980).
[CrossRef]

1979 (1)

1969 (1)

A. R. Calawa, J. O. Dimmock, T. C. Harman, I. Melngailis, “Magnetic Field Dependence of Laser Emission in PbSnSe Diode,” Phys. Rev. Lett. 23, 7 (1969).
[CrossRef]

1965 (1)

J. M. Besson, J. F. Butler, A. R. Calawa, W. Paul, R. H. Rediker, “Pressure-Tuned PbSe Diode Laser,” Appl. Phys. Lett. 7, 206 (1965).
[CrossRef]

Besson, J. M.

J. M. Besson, J. F. Butler, A. R. Calawa, W. Paul, R. H. Rediker, “Pressure-Tuned PbSe Diode Laser,” Appl. Phys. Lett. 7, 206 (1965).
[CrossRef]

Born, M.

M. Born, E. Wolf, “The Method of Excess Fractions,” in Principles of Optics, M. Born, E. Wolf, Eds. (Pergamon, Oxford, 1965), p. 291.

Butler, J. F.

J. M. Besson, J. F. Butler, A. R. Calawa, W. Paul, R. H. Rediker, “Pressure-Tuned PbSe Diode Laser,” Appl. Phys. Lett. 7, 206 (1965).
[CrossRef]

Calawa, A. R.

A. R. Calawa, J. O. Dimmock, T. C. Harman, I. Melngailis, “Magnetic Field Dependence of Laser Emission in PbSnSe Diode,” Phys. Rev. Lett. 23, 7 (1969).
[CrossRef]

J. M. Besson, J. F. Butler, A. R. Calawa, W. Paul, R. H. Rediker, “Pressure-Tuned PbSe Diode Laser,” Appl. Phys. Lett. 7, 206 (1965).
[CrossRef]

Dimmock, J. O.

A. R. Calawa, J. O. Dimmock, T. C. Harman, I. Melngailis, “Magnetic Field Dependence of Laser Emission in PbSnSe Diode,” Phys. Rev. Lett. 23, 7 (1969).
[CrossRef]

Fercher, A. F.

A. F. Fercher, H. Z. Hu, “Two-Wavelength Heterodyne Interferometry,” in Optoelectronics in Engineering, W. Waidelich, Ed. (Springer-Verlag, Berlin, 1984), p. 142.

Greve, A.

Harman, T. C.

A. R. Calawa, J. O. Dimmock, T. C. Harman, I. Melngailis, “Magnetic Field Dependence of Laser Emission in PbSnSe Diode,” Phys. Rev. Lett. 23, 7 (1969).
[CrossRef]

Harth, W.

Holly, S.

Hu, H. Z.

A. F. Fercher, H. Z. Hu, “Two-Wavelength Heterodyne Interferometry,” in Optoelectronics in Engineering, W. Waidelich, Ed. (Springer-Verlag, Berlin, 1984), p. 142.

Ito, R.

K. Saito, R. Ito, “Buried-Heterostructure AlGaAs Lasers,” IEEE J. Quantum Electron. QE-16, 205 (1980).
[CrossRef]

Kikuchi, K.

T. Okoshi, K. Kikuchi, “Frequency Stabilisation of Semiconductor Lasers for Heterodyne-Type Optical Communication Systems,” Electron. Lett. 16, 179 (1980).
[CrossRef]

Massie, N. A.

Matsumoto, H.

H. Matsumoto, “Length Measurement Using Infrared Two-Wavelength He–Xe Laser Interferometer,” Rev. Sci. Instrum. 53, 641 (1982).
[CrossRef]

Melngailis, I.

A. R. Calawa, J. O. Dimmock, T. C. Harman, I. Melngailis, “Magnetic Field Dependence of Laser Emission in PbSnSe Diode,” Phys. Rev. Lett. 23, 7 (1969).
[CrossRef]

Nelson, R. D.

Okoshi, T.

T. Okoshi, K. Kikuchi, “Frequency Stabilisation of Semiconductor Lasers for Heterodyne-Type Optical Communication Systems,” Electron. Lett. 16, 179 (1980).
[CrossRef]

Paul, W.

J. M. Besson, J. F. Butler, A. R. Calawa, W. Paul, R. H. Rediker, “Pressure-Tuned PbSe Diode Laser,” Appl. Phys. Lett. 7, 206 (1965).
[CrossRef]

Rediker, R. H.

J. M. Besson, J. F. Butler, A. R. Calawa, W. Paul, R. H. Rediker, “Pressure-Tuned PbSe Diode Laser,” Appl. Phys. Lett. 7, 206 (1965).
[CrossRef]

Saito, K.

K. Saito, R. Ito, “Buried-Heterostructure AlGaAs Lasers,” IEEE J. Quantum Electron. QE-16, 205 (1980).
[CrossRef]

Sona, A.

A. Sona, “Beam Modulation Telemetry,” In Laser Handbook, F. T. Arecchi, E. O. Shulz-Dubois, Eds. (North-Holland, Amsterdam, 1972), p. 1469.

Wolf, E.

M. Born, E. Wolf, “The Method of Excess Fractions,” in Principles of Optics, M. Born, E. Wolf, Eds. (Pergamon, Oxford, 1965), p. 291.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. M. Besson, J. F. Butler, A. R. Calawa, W. Paul, R. H. Rediker, “Pressure-Tuned PbSe Diode Laser,” Appl. Phys. Lett. 7, 206 (1965).
[CrossRef]

Electron. Lett. (1)

T. Okoshi, K. Kikuchi, “Frequency Stabilisation of Semiconductor Lasers for Heterodyne-Type Optical Communication Systems,” Electron. Lett. 16, 179 (1980).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Saito, R. Ito, “Buried-Heterostructure AlGaAs Lasers,” IEEE J. Quantum Electron. QE-16, 205 (1980).
[CrossRef]

Phys. Rev. Lett. (1)

A. R. Calawa, J. O. Dimmock, T. C. Harman, I. Melngailis, “Magnetic Field Dependence of Laser Emission in PbSnSe Diode,” Phys. Rev. Lett. 23, 7 (1969).
[CrossRef]

Rev. Sci. Instrum. (1)

H. Matsumoto, “Length Measurement Using Infrared Two-Wavelength He–Xe Laser Interferometer,” Rev. Sci. Instrum. 53, 641 (1982).
[CrossRef]

Other (3)

A. F. Fercher, H. Z. Hu, “Two-Wavelength Heterodyne Interferometry,” in Optoelectronics in Engineering, W. Waidelich, Ed. (Springer-Verlag, Berlin, 1984), p. 142.

A. Sona, “Beam Modulation Telemetry,” In Laser Handbook, F. T. Arecchi, E. O. Shulz-Dubois, Eds. (North-Holland, Amsterdam, 1972), p. 1469.

M. Born, E. Wolf, “The Method of Excess Fractions,” in Principles of Optics, M. Born, E. Wolf, Eds. (Pergamon, Oxford, 1965), p. 291.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagram showing the measurement principle.

Fig. 2
Fig. 2

Optical and electrical system for the experiment.

Fig. 3
Fig. 3

Experimental results showing the phase varying with the position of the mirror. (a) Result for a long-range measurement at 50-μm intervals. The measuring data are plotted alternately. Bias of the injection current is 70 mA; sinusoidal currents are 0.5, 1.0, and 2.0 mA; room temperature is 16.0°C. (b) Result for a short-range measurement at 10-μm intervals. The sinusoidal current is 2.0 mA; other conditions are the same as (a). The measuring range is ~1.1–1.6 mm.

Fig. 4
Fig. 4

Experimental result in a very short-range measurement at 2-μm measuring intervals. The path difference is changed by tilting a thick glass plate. Bias current is 70 mA and sinusoidal current is 2 mA. This measuring distance range is ~1.1 mm.

Fig. 5
Fig. 5

Dependence of phase variation on room temperature. Bias current is 70 mA and sinusoidal current is 2 mA. Measuring distance is 1.5 mm.

Fig. 6
Fig. 6

Experimental results obtained for surfaces with different roughness: (a) aluminum plate (Ra, 0.15 μm), (b) brass plate (Ra, 0.14 μm), and (c) mirror. The position of the three curves shifts by ~1 mm in the horizontal direction. Bias current is 70 mA, sinusoidal current is 2 mA, and measuring interval is 50 μm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ = 2 π L ( 1 λ - 1 λ + Δ λ ) .
Δ ϕ = 2 π L Δ λ λ 2 .
Δ ϕ = 2 π L Δ λ ( λ + δ λ ) 2 .
Δ ϕ Δ ϕ = 1 + 2 δ λ λ .
S = A cos ( 2 π Δ v t + 2 π L Δ λ λ 2 ) ,

Metrics