Abstract

The Lamp dip asymmetry due to linear or nonlinear lenslike effects is investigated in lasers with plane-parallel resonators. The experiments are performed using diffracted light spectroscopy. It is shown that the frequency-dependent diffraction losses are essential in determining Lamb dip asymmetry, regardless of the origin of the lenslike effects.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, W. E. Lamb, “Laser Theory and Doppler Effects,” IEEE J. Quantum Electron. QE-20, 551 (1984); M. Sargent, “A Note on Semiclassical Laser Theory,” Opt. Commun. 11, May (1974).
    [Crossref]
  2. P. R. Berman, W. E. Lamb, “Theory of Collision Effects on Line Shapes Using a Quantum-Mechanical Description of the Atomic Center-of-Mass Motion-Application to Lasers. II: The Pseudoclassical Collision Model and Steady-State Laser Intensities,” Phys. Rev. A 4, 319 (1971).
    [Crossref]
  3. A. R. Kristallov, L. A. Melnikov, V. V. Tuchin, “Collision-Induced Asymmetry in the Gas Laser Output,” Opt. Spectrosc. 48, 48 (1980).
  4. B. K. Garside, “Mode Spectra in Ring and Normal Lasers,” IEEE J. Quantum Electron. QE-4, 940 (1968).
    [Crossref]
  5. L. W. Casperson, A. Yariv, “Gain and Dispersion Focusing in a High Gain Laser,” Appl. Opt. 11, 462 (1972).
    [Crossref] [PubMed]
  6. H. Maeda, K. Shimoda, “Theory of a Gas Laser with a Gaussian Field Profile,” J. Appl. Phys. 46, 1235 (1975).
    [Crossref]
  7. A. N. Titov, “Ultimate Precision of the Absorption Saturation Method,” Sov. J. Quantum Electron. 11, 1242 (1981).
    [Crossref]
  8. A. V. Astakhov, Yu. V. Gorlov, A. F. Mukhamedgalieva, V. V. Nikitin, “Investigation of Changes in the Angular Divergence of Helium–Neon Laser Radiation (λ = 3.39 μm) as a Function of the Dispersion Characteristic of the Active Medium,” Sov. J. Quantum Electron. 14, 1142 (1984); Erratum, Sov. J. Quantum Electron. 14, 1272 (1984).
    [Crossref]
  9. C. J. Bordé, J. L. Hall, C. V. Kunasz, D. G. Hummer, “Saturated Absorption Line Shape: Calculation of the Transit-Time Broadening by a Perturbation Approach,” Phys. Rev. A 14, 236 (1976).
    [Crossref]
  10. J. L. Hall, C. J. Bordé, “Shift and Broadening of Saturated Absorption Resonances Due to the Laser Wave Fronts,” Appl. Phys. Lett. 29, 788 (1976).
    [Crossref]
  11. R. C. Thompson, “High-Resolution Laser Spectroscopy of Atomic Systems,” Rep. Prog. Phys. 48, 531 (1985).
    [Crossref]
  12. See, for example, R. Le Naour, A. Le Floch, G. Stéphan, “Comparative Analysis of a Laser Frequency Stabilization Method Using a Mobile and a Fixed Lorentzian,” Opt. Quantum Electron. 10, 119 (1978); A. Brillet, P. Cérez, “Laser Frequency Stabilization by Saturated Absorption,” J. Phys. Paris Colloq. C8, 73 (1981).
    [Crossref]
  13. C. Freed, H. A. Haus, “Lamb Dip in CO Lasers,” IEEE J. Quantum Electron. QE-9, 219 (1973).
    [Crossref]
  14. See, for example, E. K. Gorton, E. W. Parcell, “Thermal Defocusing (LIMP) in Stable CO2 Resonators,” J. Phys. D 16, 1827 (1983).
    [Crossref]
  15. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1976), p. 344.
  16. A. Le Floch, R. Le Naour, J. M. Lenormand, J. P. Taché, “Nonlinear Frequency-Dependent Diffraction Effect in Intra-cavity Resonance Asymmetries,” Phys. Rev. Lett. 45, 544 (1980).
    [Crossref]
  17. A. Le Floch, R. Le Naour, J. M. Lenormand, J. P. Taché, “A Critical Geometry for Lasers with Internal Lenslike Effects,” J. Phys. Paris Lett. 43, 493 (1982).
    [Crossref]
  18. P. Cérez, R. Felder, “Gas-Lens Effect and Cavity Design of Some Frequency-Stabilized He–Ne Lasers,” Appl. Opt. 22, 1251 (1983).
    [Crossref] [PubMed]
  19. S. Asami, H. Gamo, T. Tako, “Asymmetrical Lamb Dip in a High-Gain 3.5 μm Xenon Laser. I: Experiments,” Jpn. J. Appl. Phys. 22, 88 (1983).
    [Crossref]
  20. S. Asami, H. Gamo, T. Tako, “Asymmetrical Lamb Dip in a High-Gain 3.5 μm Xenon Laser. II: Analysis of Experimental Results,” Jpn. J. Appl. Phys. 22, 94 (1983).
    [Crossref]
  21. A. E. Siegman, “Optical Resonators,” in Lasers, Physics, Systems and Techniques, W. J. Firth, R. G. Harrison, Eds. (Scottish Universities Summer School in Physics, 1982), p. 92.
  22. H. Kogelnik, “Imaging of Optical Modes-Resonators with Internal Lenses,” Bell Syst. Tech. J. 44, 455 (1965).
  23. P. Baues, “Huygens’ Principle in Inhomogeneous, Isotropic Media and a General Integral Equation Applicable to Optical Resonators,” Opto-electronics 1, 37 (1969).
    [Crossref]
  24. I. P. Mazanko, M. I. Molchanov, N.-D. D. Ogurok, M. V. Sviridov, “Gain Distribution Measurement in He–Ne Laser Tubes,” Opt. Spectrosc. 30, 495 (1971).
  25. J. P. Taché, “Experimental Investigation of Diffraction Losses in a Laser Resonator by Means of the Diffracted Light,” Opt. Commun. 49, 340 (1984).
    [Crossref]
  26. P. A. Wolff, N. B. Abraham, S. R. Smith, “Measurement of Radial Variation of 3.51-μm Gain in Xenon Discharge Tubes,” IEEE J. Quantum Electron. QE-13, 400 (1977).
    [Crossref]
  27. S. Asami, National Research Laboratory of Metrology, Japan; private communication.
  28. M. Benhayoun, “Stabilisation de laser (CO2) par absorption saturée (Os O4) dans une cavité résonnante externe,” Thèse, Université Paris VI (1985).

1985 (1)

R. C. Thompson, “High-Resolution Laser Spectroscopy of Atomic Systems,” Rep. Prog. Phys. 48, 531 (1985).
[Crossref]

1984 (3)

See, for example, W. E. Lamb, “Laser Theory and Doppler Effects,” IEEE J. Quantum Electron. QE-20, 551 (1984); M. Sargent, “A Note on Semiclassical Laser Theory,” Opt. Commun. 11, May (1974).
[Crossref]

A. V. Astakhov, Yu. V. Gorlov, A. F. Mukhamedgalieva, V. V. Nikitin, “Investigation of Changes in the Angular Divergence of Helium–Neon Laser Radiation (λ = 3.39 μm) as a Function of the Dispersion Characteristic of the Active Medium,” Sov. J. Quantum Electron. 14, 1142 (1984); Erratum, Sov. J. Quantum Electron. 14, 1272 (1984).
[Crossref]

J. P. Taché, “Experimental Investigation of Diffraction Losses in a Laser Resonator by Means of the Diffracted Light,” Opt. Commun. 49, 340 (1984).
[Crossref]

1983 (4)

See, for example, E. K. Gorton, E. W. Parcell, “Thermal Defocusing (LIMP) in Stable CO2 Resonators,” J. Phys. D 16, 1827 (1983).
[Crossref]

P. Cérez, R. Felder, “Gas-Lens Effect and Cavity Design of Some Frequency-Stabilized He–Ne Lasers,” Appl. Opt. 22, 1251 (1983).
[Crossref] [PubMed]

S. Asami, H. Gamo, T. Tako, “Asymmetrical Lamb Dip in a High-Gain 3.5 μm Xenon Laser. I: Experiments,” Jpn. J. Appl. Phys. 22, 88 (1983).
[Crossref]

S. Asami, H. Gamo, T. Tako, “Asymmetrical Lamb Dip in a High-Gain 3.5 μm Xenon Laser. II: Analysis of Experimental Results,” Jpn. J. Appl. Phys. 22, 94 (1983).
[Crossref]

1982 (1)

A. Le Floch, R. Le Naour, J. M. Lenormand, J. P. Taché, “A Critical Geometry for Lasers with Internal Lenslike Effects,” J. Phys. Paris Lett. 43, 493 (1982).
[Crossref]

1981 (1)

A. N. Titov, “Ultimate Precision of the Absorption Saturation Method,” Sov. J. Quantum Electron. 11, 1242 (1981).
[Crossref]

1980 (2)

A. Le Floch, R. Le Naour, J. M. Lenormand, J. P. Taché, “Nonlinear Frequency-Dependent Diffraction Effect in Intra-cavity Resonance Asymmetries,” Phys. Rev. Lett. 45, 544 (1980).
[Crossref]

A. R. Kristallov, L. A. Melnikov, V. V. Tuchin, “Collision-Induced Asymmetry in the Gas Laser Output,” Opt. Spectrosc. 48, 48 (1980).

1978 (1)

See, for example, R. Le Naour, A. Le Floch, G. Stéphan, “Comparative Analysis of a Laser Frequency Stabilization Method Using a Mobile and a Fixed Lorentzian,” Opt. Quantum Electron. 10, 119 (1978); A. Brillet, P. Cérez, “Laser Frequency Stabilization by Saturated Absorption,” J. Phys. Paris Colloq. C8, 73 (1981).
[Crossref]

1977 (1)

P. A. Wolff, N. B. Abraham, S. R. Smith, “Measurement of Radial Variation of 3.51-μm Gain in Xenon Discharge Tubes,” IEEE J. Quantum Electron. QE-13, 400 (1977).
[Crossref]

1976 (2)

C. J. Bordé, J. L. Hall, C. V. Kunasz, D. G. Hummer, “Saturated Absorption Line Shape: Calculation of the Transit-Time Broadening by a Perturbation Approach,” Phys. Rev. A 14, 236 (1976).
[Crossref]

J. L. Hall, C. J. Bordé, “Shift and Broadening of Saturated Absorption Resonances Due to the Laser Wave Fronts,” Appl. Phys. Lett. 29, 788 (1976).
[Crossref]

1975 (1)

H. Maeda, K. Shimoda, “Theory of a Gas Laser with a Gaussian Field Profile,” J. Appl. Phys. 46, 1235 (1975).
[Crossref]

1973 (1)

C. Freed, H. A. Haus, “Lamb Dip in CO Lasers,” IEEE J. Quantum Electron. QE-9, 219 (1973).
[Crossref]

1972 (1)

1971 (2)

P. R. Berman, W. E. Lamb, “Theory of Collision Effects on Line Shapes Using a Quantum-Mechanical Description of the Atomic Center-of-Mass Motion-Application to Lasers. II: The Pseudoclassical Collision Model and Steady-State Laser Intensities,” Phys. Rev. A 4, 319 (1971).
[Crossref]

I. P. Mazanko, M. I. Molchanov, N.-D. D. Ogurok, M. V. Sviridov, “Gain Distribution Measurement in He–Ne Laser Tubes,” Opt. Spectrosc. 30, 495 (1971).

1969 (1)

P. Baues, “Huygens’ Principle in Inhomogeneous, Isotropic Media and a General Integral Equation Applicable to Optical Resonators,” Opto-electronics 1, 37 (1969).
[Crossref]

1968 (1)

B. K. Garside, “Mode Spectra in Ring and Normal Lasers,” IEEE J. Quantum Electron. QE-4, 940 (1968).
[Crossref]

1965 (1)

H. Kogelnik, “Imaging of Optical Modes-Resonators with Internal Lenses,” Bell Syst. Tech. J. 44, 455 (1965).

Abraham, N. B.

P. A. Wolff, N. B. Abraham, S. R. Smith, “Measurement of Radial Variation of 3.51-μm Gain in Xenon Discharge Tubes,” IEEE J. Quantum Electron. QE-13, 400 (1977).
[Crossref]

Asami, S.

S. Asami, H. Gamo, T. Tako, “Asymmetrical Lamb Dip in a High-Gain 3.5 μm Xenon Laser. I: Experiments,” Jpn. J. Appl. Phys. 22, 88 (1983).
[Crossref]

S. Asami, H. Gamo, T. Tako, “Asymmetrical Lamb Dip in a High-Gain 3.5 μm Xenon Laser. II: Analysis of Experimental Results,” Jpn. J. Appl. Phys. 22, 94 (1983).
[Crossref]

S. Asami, National Research Laboratory of Metrology, Japan; private communication.

Astakhov, A. V.

A. V. Astakhov, Yu. V. Gorlov, A. F. Mukhamedgalieva, V. V. Nikitin, “Investigation of Changes in the Angular Divergence of Helium–Neon Laser Radiation (λ = 3.39 μm) as a Function of the Dispersion Characteristic of the Active Medium,” Sov. J. Quantum Electron. 14, 1142 (1984); Erratum, Sov. J. Quantum Electron. 14, 1272 (1984).
[Crossref]

Baues, P.

P. Baues, “Huygens’ Principle in Inhomogeneous, Isotropic Media and a General Integral Equation Applicable to Optical Resonators,” Opto-electronics 1, 37 (1969).
[Crossref]

Benhayoun, M.

M. Benhayoun, “Stabilisation de laser (CO2) par absorption saturée (Os O4) dans une cavité résonnante externe,” Thèse, Université Paris VI (1985).

Berman, P. R.

P. R. Berman, W. E. Lamb, “Theory of Collision Effects on Line Shapes Using a Quantum-Mechanical Description of the Atomic Center-of-Mass Motion-Application to Lasers. II: The Pseudoclassical Collision Model and Steady-State Laser Intensities,” Phys. Rev. A 4, 319 (1971).
[Crossref]

Bordé, C. J.

C. J. Bordé, J. L. Hall, C. V. Kunasz, D. G. Hummer, “Saturated Absorption Line Shape: Calculation of the Transit-Time Broadening by a Perturbation Approach,” Phys. Rev. A 14, 236 (1976).
[Crossref]

J. L. Hall, C. J. Bordé, “Shift and Broadening of Saturated Absorption Resonances Due to the Laser Wave Fronts,” Appl. Phys. Lett. 29, 788 (1976).
[Crossref]

Casperson, L. W.

Cérez, P.

Felder, R.

Freed, C.

C. Freed, H. A. Haus, “Lamb Dip in CO Lasers,” IEEE J. Quantum Electron. QE-9, 219 (1973).
[Crossref]

Gamo, H.

S. Asami, H. Gamo, T. Tako, “Asymmetrical Lamb Dip in a High-Gain 3.5 μm Xenon Laser. II: Analysis of Experimental Results,” Jpn. J. Appl. Phys. 22, 94 (1983).
[Crossref]

S. Asami, H. Gamo, T. Tako, “Asymmetrical Lamb Dip in a High-Gain 3.5 μm Xenon Laser. I: Experiments,” Jpn. J. Appl. Phys. 22, 88 (1983).
[Crossref]

Garside, B. K.

B. K. Garside, “Mode Spectra in Ring and Normal Lasers,” IEEE J. Quantum Electron. QE-4, 940 (1968).
[Crossref]

Gorlov, Yu. V.

A. V. Astakhov, Yu. V. Gorlov, A. F. Mukhamedgalieva, V. V. Nikitin, “Investigation of Changes in the Angular Divergence of Helium–Neon Laser Radiation (λ = 3.39 μm) as a Function of the Dispersion Characteristic of the Active Medium,” Sov. J. Quantum Electron. 14, 1142 (1984); Erratum, Sov. J. Quantum Electron. 14, 1272 (1984).
[Crossref]

Gorton, E. K.

See, for example, E. K. Gorton, E. W. Parcell, “Thermal Defocusing (LIMP) in Stable CO2 Resonators,” J. Phys. D 16, 1827 (1983).
[Crossref]

Hall, J. L.

C. J. Bordé, J. L. Hall, C. V. Kunasz, D. G. Hummer, “Saturated Absorption Line Shape: Calculation of the Transit-Time Broadening by a Perturbation Approach,” Phys. Rev. A 14, 236 (1976).
[Crossref]

J. L. Hall, C. J. Bordé, “Shift and Broadening of Saturated Absorption Resonances Due to the Laser Wave Fronts,” Appl. Phys. Lett. 29, 788 (1976).
[Crossref]

Haus, H. A.

C. Freed, H. A. Haus, “Lamb Dip in CO Lasers,” IEEE J. Quantum Electron. QE-9, 219 (1973).
[Crossref]

Hummer, D. G.

C. J. Bordé, J. L. Hall, C. V. Kunasz, D. G. Hummer, “Saturated Absorption Line Shape: Calculation of the Transit-Time Broadening by a Perturbation Approach,” Phys. Rev. A 14, 236 (1976).
[Crossref]

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1976), p. 344.

Kogelnik, H.

H. Kogelnik, “Imaging of Optical Modes-Resonators with Internal Lenses,” Bell Syst. Tech. J. 44, 455 (1965).

Kristallov, A. R.

A. R. Kristallov, L. A. Melnikov, V. V. Tuchin, “Collision-Induced Asymmetry in the Gas Laser Output,” Opt. Spectrosc. 48, 48 (1980).

Kunasz, C. V.

C. J. Bordé, J. L. Hall, C. V. Kunasz, D. G. Hummer, “Saturated Absorption Line Shape: Calculation of the Transit-Time Broadening by a Perturbation Approach,” Phys. Rev. A 14, 236 (1976).
[Crossref]

Lamb, W. E.

See, for example, W. E. Lamb, “Laser Theory and Doppler Effects,” IEEE J. Quantum Electron. QE-20, 551 (1984); M. Sargent, “A Note on Semiclassical Laser Theory,” Opt. Commun. 11, May (1974).
[Crossref]

P. R. Berman, W. E. Lamb, “Theory of Collision Effects on Line Shapes Using a Quantum-Mechanical Description of the Atomic Center-of-Mass Motion-Application to Lasers. II: The Pseudoclassical Collision Model and Steady-State Laser Intensities,” Phys. Rev. A 4, 319 (1971).
[Crossref]

Le Floch, A.

A. Le Floch, R. Le Naour, J. M. Lenormand, J. P. Taché, “A Critical Geometry for Lasers with Internal Lenslike Effects,” J. Phys. Paris Lett. 43, 493 (1982).
[Crossref]

A. Le Floch, R. Le Naour, J. M. Lenormand, J. P. Taché, “Nonlinear Frequency-Dependent Diffraction Effect in Intra-cavity Resonance Asymmetries,” Phys. Rev. Lett. 45, 544 (1980).
[Crossref]

See, for example, R. Le Naour, A. Le Floch, G. Stéphan, “Comparative Analysis of a Laser Frequency Stabilization Method Using a Mobile and a Fixed Lorentzian,” Opt. Quantum Electron. 10, 119 (1978); A. Brillet, P. Cérez, “Laser Frequency Stabilization by Saturated Absorption,” J. Phys. Paris Colloq. C8, 73 (1981).
[Crossref]

Le Naour, R.

A. Le Floch, R. Le Naour, J. M. Lenormand, J. P. Taché, “A Critical Geometry for Lasers with Internal Lenslike Effects,” J. Phys. Paris Lett. 43, 493 (1982).
[Crossref]

A. Le Floch, R. Le Naour, J. M. Lenormand, J. P. Taché, “Nonlinear Frequency-Dependent Diffraction Effect in Intra-cavity Resonance Asymmetries,” Phys. Rev. Lett. 45, 544 (1980).
[Crossref]

See, for example, R. Le Naour, A. Le Floch, G. Stéphan, “Comparative Analysis of a Laser Frequency Stabilization Method Using a Mobile and a Fixed Lorentzian,” Opt. Quantum Electron. 10, 119 (1978); A. Brillet, P. Cérez, “Laser Frequency Stabilization by Saturated Absorption,” J. Phys. Paris Colloq. C8, 73 (1981).
[Crossref]

Lenormand, J. M.

A. Le Floch, R. Le Naour, J. M. Lenormand, J. P. Taché, “A Critical Geometry for Lasers with Internal Lenslike Effects,” J. Phys. Paris Lett. 43, 493 (1982).
[Crossref]

A. Le Floch, R. Le Naour, J. M. Lenormand, J. P. Taché, “Nonlinear Frequency-Dependent Diffraction Effect in Intra-cavity Resonance Asymmetries,” Phys. Rev. Lett. 45, 544 (1980).
[Crossref]

Maeda, H.

H. Maeda, K. Shimoda, “Theory of a Gas Laser with a Gaussian Field Profile,” J. Appl. Phys. 46, 1235 (1975).
[Crossref]

Mazanko, I. P.

I. P. Mazanko, M. I. Molchanov, N.-D. D. Ogurok, M. V. Sviridov, “Gain Distribution Measurement in He–Ne Laser Tubes,” Opt. Spectrosc. 30, 495 (1971).

Melnikov, L. A.

A. R. Kristallov, L. A. Melnikov, V. V. Tuchin, “Collision-Induced Asymmetry in the Gas Laser Output,” Opt. Spectrosc. 48, 48 (1980).

Molchanov, M. I.

I. P. Mazanko, M. I. Molchanov, N.-D. D. Ogurok, M. V. Sviridov, “Gain Distribution Measurement in He–Ne Laser Tubes,” Opt. Spectrosc. 30, 495 (1971).

Mukhamedgalieva, A. F.

A. V. Astakhov, Yu. V. Gorlov, A. F. Mukhamedgalieva, V. V. Nikitin, “Investigation of Changes in the Angular Divergence of Helium–Neon Laser Radiation (λ = 3.39 μm) as a Function of the Dispersion Characteristic of the Active Medium,” Sov. J. Quantum Electron. 14, 1142 (1984); Erratum, Sov. J. Quantum Electron. 14, 1272 (1984).
[Crossref]

Nikitin, V. V.

A. V. Astakhov, Yu. V. Gorlov, A. F. Mukhamedgalieva, V. V. Nikitin, “Investigation of Changes in the Angular Divergence of Helium–Neon Laser Radiation (λ = 3.39 μm) as a Function of the Dispersion Characteristic of the Active Medium,” Sov. J. Quantum Electron. 14, 1142 (1984); Erratum, Sov. J. Quantum Electron. 14, 1272 (1984).
[Crossref]

Ogurok, N.-D. D.

I. P. Mazanko, M. I. Molchanov, N.-D. D. Ogurok, M. V. Sviridov, “Gain Distribution Measurement in He–Ne Laser Tubes,” Opt. Spectrosc. 30, 495 (1971).

Parcell, E. W.

See, for example, E. K. Gorton, E. W. Parcell, “Thermal Defocusing (LIMP) in Stable CO2 Resonators,” J. Phys. D 16, 1827 (1983).
[Crossref]

Shimoda, K.

H. Maeda, K. Shimoda, “Theory of a Gas Laser with a Gaussian Field Profile,” J. Appl. Phys. 46, 1235 (1975).
[Crossref]

Siegman, A. E.

A. E. Siegman, “Optical Resonators,” in Lasers, Physics, Systems and Techniques, W. J. Firth, R. G. Harrison, Eds. (Scottish Universities Summer School in Physics, 1982), p. 92.

Smith, S. R.

P. A. Wolff, N. B. Abraham, S. R. Smith, “Measurement of Radial Variation of 3.51-μm Gain in Xenon Discharge Tubes,” IEEE J. Quantum Electron. QE-13, 400 (1977).
[Crossref]

Stéphan, G.

See, for example, R. Le Naour, A. Le Floch, G. Stéphan, “Comparative Analysis of a Laser Frequency Stabilization Method Using a Mobile and a Fixed Lorentzian,” Opt. Quantum Electron. 10, 119 (1978); A. Brillet, P. Cérez, “Laser Frequency Stabilization by Saturated Absorption,” J. Phys. Paris Colloq. C8, 73 (1981).
[Crossref]

Sviridov, M. V.

I. P. Mazanko, M. I. Molchanov, N.-D. D. Ogurok, M. V. Sviridov, “Gain Distribution Measurement in He–Ne Laser Tubes,” Opt. Spectrosc. 30, 495 (1971).

Taché, J. P.

J. P. Taché, “Experimental Investigation of Diffraction Losses in a Laser Resonator by Means of the Diffracted Light,” Opt. Commun. 49, 340 (1984).
[Crossref]

A. Le Floch, R. Le Naour, J. M. Lenormand, J. P. Taché, “A Critical Geometry for Lasers with Internal Lenslike Effects,” J. Phys. Paris Lett. 43, 493 (1982).
[Crossref]

A. Le Floch, R. Le Naour, J. M. Lenormand, J. P. Taché, “Nonlinear Frequency-Dependent Diffraction Effect in Intra-cavity Resonance Asymmetries,” Phys. Rev. Lett. 45, 544 (1980).
[Crossref]

Tako, T.

S. Asami, H. Gamo, T. Tako, “Asymmetrical Lamb Dip in a High-Gain 3.5 μm Xenon Laser. I: Experiments,” Jpn. J. Appl. Phys. 22, 88 (1983).
[Crossref]

S. Asami, H. Gamo, T. Tako, “Asymmetrical Lamb Dip in a High-Gain 3.5 μm Xenon Laser. II: Analysis of Experimental Results,” Jpn. J. Appl. Phys. 22, 94 (1983).
[Crossref]

Thompson, R. C.

R. C. Thompson, “High-Resolution Laser Spectroscopy of Atomic Systems,” Rep. Prog. Phys. 48, 531 (1985).
[Crossref]

Titov, A. N.

A. N. Titov, “Ultimate Precision of the Absorption Saturation Method,” Sov. J. Quantum Electron. 11, 1242 (1981).
[Crossref]

Tuchin, V. V.

A. R. Kristallov, L. A. Melnikov, V. V. Tuchin, “Collision-Induced Asymmetry in the Gas Laser Output,” Opt. Spectrosc. 48, 48 (1980).

Wolff, P. A.

P. A. Wolff, N. B. Abraham, S. R. Smith, “Measurement of Radial Variation of 3.51-μm Gain in Xenon Discharge Tubes,” IEEE J. Quantum Electron. QE-13, 400 (1977).
[Crossref]

Yariv, A.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

J. L. Hall, C. J. Bordé, “Shift and Broadening of Saturated Absorption Resonances Due to the Laser Wave Fronts,” Appl. Phys. Lett. 29, 788 (1976).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Imaging of Optical Modes-Resonators with Internal Lenses,” Bell Syst. Tech. J. 44, 455 (1965).

IEEE J. Quantum Electron. (4)

P. A. Wolff, N. B. Abraham, S. R. Smith, “Measurement of Radial Variation of 3.51-μm Gain in Xenon Discharge Tubes,” IEEE J. Quantum Electron. QE-13, 400 (1977).
[Crossref]

C. Freed, H. A. Haus, “Lamb Dip in CO Lasers,” IEEE J. Quantum Electron. QE-9, 219 (1973).
[Crossref]

See, for example, W. E. Lamb, “Laser Theory and Doppler Effects,” IEEE J. Quantum Electron. QE-20, 551 (1984); M. Sargent, “A Note on Semiclassical Laser Theory,” Opt. Commun. 11, May (1974).
[Crossref]

B. K. Garside, “Mode Spectra in Ring and Normal Lasers,” IEEE J. Quantum Electron. QE-4, 940 (1968).
[Crossref]

J. Appl. Phys. (1)

H. Maeda, K. Shimoda, “Theory of a Gas Laser with a Gaussian Field Profile,” J. Appl. Phys. 46, 1235 (1975).
[Crossref]

J. Phys. D (1)

See, for example, E. K. Gorton, E. W. Parcell, “Thermal Defocusing (LIMP) in Stable CO2 Resonators,” J. Phys. D 16, 1827 (1983).
[Crossref]

J. Phys. Paris Lett. (1)

A. Le Floch, R. Le Naour, J. M. Lenormand, J. P. Taché, “A Critical Geometry for Lasers with Internal Lenslike Effects,” J. Phys. Paris Lett. 43, 493 (1982).
[Crossref]

Jpn. J. Appl. Phys. (2)

S. Asami, H. Gamo, T. Tako, “Asymmetrical Lamb Dip in a High-Gain 3.5 μm Xenon Laser. I: Experiments,” Jpn. J. Appl. Phys. 22, 88 (1983).
[Crossref]

S. Asami, H. Gamo, T. Tako, “Asymmetrical Lamb Dip in a High-Gain 3.5 μm Xenon Laser. II: Analysis of Experimental Results,” Jpn. J. Appl. Phys. 22, 94 (1983).
[Crossref]

Opt. Spectrosc. (1)

I. P. Mazanko, M. I. Molchanov, N.-D. D. Ogurok, M. V. Sviridov, “Gain Distribution Measurement in He–Ne Laser Tubes,” Opt. Spectrosc. 30, 495 (1971).

Opt. Commun. (1)

J. P. Taché, “Experimental Investigation of Diffraction Losses in a Laser Resonator by Means of the Diffracted Light,” Opt. Commun. 49, 340 (1984).
[Crossref]

Opt. Quantum Electron. (1)

See, for example, R. Le Naour, A. Le Floch, G. Stéphan, “Comparative Analysis of a Laser Frequency Stabilization Method Using a Mobile and a Fixed Lorentzian,” Opt. Quantum Electron. 10, 119 (1978); A. Brillet, P. Cérez, “Laser Frequency Stabilization by Saturated Absorption,” J. Phys. Paris Colloq. C8, 73 (1981).
[Crossref]

Opt. Spectrosc. (1)

A. R. Kristallov, L. A. Melnikov, V. V. Tuchin, “Collision-Induced Asymmetry in the Gas Laser Output,” Opt. Spectrosc. 48, 48 (1980).

Opto-electronics (1)

P. Baues, “Huygens’ Principle in Inhomogeneous, Isotropic Media and a General Integral Equation Applicable to Optical Resonators,” Opto-electronics 1, 37 (1969).
[Crossref]

Phys. Rev. A (1)

P. R. Berman, W. E. Lamb, “Theory of Collision Effects on Line Shapes Using a Quantum-Mechanical Description of the Atomic Center-of-Mass Motion-Application to Lasers. II: The Pseudoclassical Collision Model and Steady-State Laser Intensities,” Phys. Rev. A 4, 319 (1971).
[Crossref]

Phys. Rev. A (1)

C. J. Bordé, J. L. Hall, C. V. Kunasz, D. G. Hummer, “Saturated Absorption Line Shape: Calculation of the Transit-Time Broadening by a Perturbation Approach,” Phys. Rev. A 14, 236 (1976).
[Crossref]

Phys. Rev. Lett. (1)

A. Le Floch, R. Le Naour, J. M. Lenormand, J. P. Taché, “Nonlinear Frequency-Dependent Diffraction Effect in Intra-cavity Resonance Asymmetries,” Phys. Rev. Lett. 45, 544 (1980).
[Crossref]

Rep. Prog. Phys. (1)

R. C. Thompson, “High-Resolution Laser Spectroscopy of Atomic Systems,” Rep. Prog. Phys. 48, 531 (1985).
[Crossref]

Sov. J. Quantum Electron. (1)

A. V. Astakhov, Yu. V. Gorlov, A. F. Mukhamedgalieva, V. V. Nikitin, “Investigation of Changes in the Angular Divergence of Helium–Neon Laser Radiation (λ = 3.39 μm) as a Function of the Dispersion Characteristic of the Active Medium,” Sov. J. Quantum Electron. 14, 1142 (1984); Erratum, Sov. J. Quantum Electron. 14, 1272 (1984).
[Crossref]

Sov. J. Quantum Electron. (1)

A. N. Titov, “Ultimate Precision of the Absorption Saturation Method,” Sov. J. Quantum Electron. 11, 1242 (1981).
[Crossref]

Other (4)

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1976), p. 344.

A. E. Siegman, “Optical Resonators,” in Lasers, Physics, Systems and Techniques, W. J. Firth, R. G. Harrison, Eds. (Scottish Universities Summer School in Physics, 1982), p. 92.

S. Asami, National Research Laboratory of Metrology, Japan; private communication.

M. Benhayoun, “Stabilisation de laser (CO2) par absorption saturée (Os O4) dans une cavité résonnante externe,” Thèse, Université Paris VI (1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Near-planar resonator with internal lens. (b) Relative spot size variations as a function of R/f. The curve shown corresponds to d/R = 1 × 10−2 but the curves corresponding to values of d/R 1 × 10−1 are practically indistinguishable for the values of R/f used here.

Fig. 2
Fig. 2

Experimental setup: M1, high-reflectivity (99%) plane mirror mounted on a piezoelectric transducer; M2, output plane mirror (25% reflectivity). The diameter of the two circular apertures is 2a = 1.1 mm. D1 and D2 are InAs detectors which measure the output power and the diffracted light picked off, respectively. A lens (not illustrated) is located in front of D1 to measure the overall laser beam. Since M2 has a large transmission, a polarizer P and a λ/4 phase plate PP are used to prevent optical feedback from the detector into the laser.

Fig. 3
Fig. 3

Laser beam intensity profile at a distance of 60 cm from the output mirror. The scan detector is an InAs detector with a sensitive area of small diameter (0.25 mm). The dots correspond to a theoretical Gaussian profile with w = 2.1 mm.

Fig. 4
Fig. 4

(a) Laser output power Ip and (b) diffracted light intensity ID as the laser frequency ν is scanned. The maximum output power is ~15 μW. The cavity length is L = 44 cm leading to C/2L = 340 MHz. The discharge current is i = 12 mA. (c) The ratio ID/Ip deduced from the two preceding curves vs the laser frequency.

Fig. 5
Fig. 5

(a) Laser output power Ip and (b) diffracted light intensity ID as the laser frequency ν is scanned (C/2L = 310 MHz, i = 12 mA). The output power is reduced by a factor of ~8 with respect to the output power shown in Fig. 4(a). (c) Same as Fig. 4(c).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

q 2 = A q 1 + B C q 1 + D ,
( D B C A ) ( A B C D ) = ( AD + BC 2 BD 2 AC AD + BC ) ,
( A B C D ) = ( 1 0 - 1 R 1 ) ( 1 d 2 0 1 ) × ( 1 0 - 1 f 1 ) ( 1 d 2 0 1 ) ( 1 0 - 1 R 1 ) .
w f 4 = - ( λ π ) 2 B C ,
B = d ( 1 - d 4 f ) ,
C = - 2 R - 1 f ( 1 - d R ) + d R 2 ( 1 - d 4 f ) .
w 4 = ( λ π ) 2 R 2 d 2 R - d .

Metrics