Abstract

Laboratory measurements of the absorption coefficient and refractive index of solid CO2 are reviewed for all parts of the electromagnetic spectrum from the ultraviolet to the microwave with emphasis on values for temperatures above 77 K. The available measurements in some cases require reinterpretation. A compilation of the spectral absorption coefficient kabs is made for 52-nm to 160-nm wavelength (with some gaps because of lack of data), and the complex refractive index is then computed by Kramers-Kronig analysis. The uncertainty in imaginary refractive index is discussed; it varies greatly with wavelength. The real part of the refractive index is close to 1.4 for all parts of the spectrum except near strong absorption bands and is accurate to ±0.05 outside those bands. No measurements of absorption are available for 180–330-nm, 1.0–2.5-μm, and 25-μm–25-mm wavelength, except in the strong narrow absorption lines. Remeasurement of kabs is also needed for parts of the IR spectrum between 2.5 and 25 μm because of experimental error in the available measurements.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pollack, O. B. Toon, “Quasi-Periodic Climate Changes on Mars: A Review,” Icarus 50, 259 (1982).
    [Crossref]
  2. L. G. Liu, “Dry Ice II, a New Polymorph of CO2,” Nature London 303, 508 (1983).
    [Crossref]
  3. R. W. G. Wyckoff, Crystal Structures, Vol. 1 (Wiley, New York, 1963). p. 368.
  4. N. H. Hartshorne, A. Stuart, Crystals and the Polarizing Microscope (Edward Arnold, London, 1970), p. 19.
  5. U. Fink, G. T. Sill, “The Infrared Spectral Properties of Frozen Volatiles,” in Comets, L. L. Wilkening, Ed. (U. of Arizona Press, Tucson, 1982), pp. 164–202.
  6. S. G. Warren, W. J. Wiscombe, “Spectral Albedo and Emissivity of CO2-Frost in Martian Polar Caps: Model Results,” Icarus (submitted).
  7. H. Yamada, W. B. Person, “Absolute Infrared Intensities of the Fundamental Absorption Bands in Solid CO2 and N2O,” J. Chem. Phys. 41, 2478 (1964).
    [Crossref]
  8. K. M. Monahan, W. C. Walker, “Photoabsorption of Solid Carbon Dioxide from 7 to 12 eV,” J. Chem. Phys. 61, 3886 (1974).
    [Crossref]
  9. W. G. Egan, F. A. Spagnolo, “Complex Index of Refraction of Bulk Solid Carbon Dioxide,” Appl. Opt. 8, 2359 (1969).
    [Crossref] [PubMed]
  10. U. Behn, “Ueber die Dichte der Kohlenäure im festen und flüssigen Zustande,” Ann. Phys. 308, 733 (1900).
    [Crossref]
  11. V. Gaizauskas, “Studies of the Infrared and Raman Spectra of Gaseous, Liquid and Solid Carbon Dioxide,” Ph.D. Thesis, U Toronto, Canada (1955).
  12. R. A. Blest-Castillo, “Infrared Absorption of Solid Carbon Dioxide in the Frequency Range 1100 cm−1-1600 cm#x02212;1,” M.S. Thesis, U. Toronto, Canada (1970).
  13. L. Mannik, E. J. Allin, “The (ν1,2ν2) Vibron-Phonon Infrared Absorption Band of Solid CO2,” Can. J. Phys. 50, 2105 (1972).
    [Crossref]
  14. R. Ditteon, H. H. Kieffer, “Optical Properties of Solid CO2: Application to Mars,” J. Geophys. Res. 84, 8294 (1979).
    [Crossref]
  15. S. G. Warren, “Optical Constants of Ice from the Ultraviolet to the Microwave,” Appl. Opt. 23, 1206 (1984).
    [Crossref] [PubMed]
  16. A. S. Koster, “Oxygen K Emission Spectra of Ice, Solid Carbon Dioxide, and Solid Alcohols,” Appl. Phys. Lett. 18, 170 (1971).
    [Crossref]
  17. J. Daniels, “Optical Constants of the Solid Atmospheric Gases N2, O2 and CO2,” Opt. Commun. 2, 352 (1970).
    [Crossref]
  18. J. Daniels, C. v. Festenberg, H. Raether, K. Zeppenfeld, “Optical Constants of Solids by Electron Spectroscopy,” in Springer Tracts in Modern Physics, Vol. 54 (Springer-Verlag, Heidelberg, 1970), p. 78.
    [Crossref]
  19. E. E. Koch, M. Skibowski, “Electronic Excitation of Solid Carbon Dioxidein the Extreme Ultraviolet,” Chem. Phys. Lett. 14, 37 (1972).
    [Crossref]
  20. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 628–629.
  21. G. Andermann, A. Caron, D. A. Dows, “Kramers-Kronig Dispersion Analysis of Infrared Reflectance Bands,” J. Opt. Soc. Am. 55, 1210 (1965).
    [Crossref]
  22. F. Stern, “Elementary Theory of the Optical Properties of Solids,” in Solid State Physics, Vol. 15 (Academic, New York, 1963), p. 300.
    [Crossref]
  23. J. H. Fock, H. J. Lau, E. E. Koch, “Electronic Band Structure of Solid CO2 as Determined from the hν-Dependence of Photoelectron Emission,” Chem. Phys. 83, 377 (1984).
    [Crossref]
  24. K. M. Monahan, W. C. Walker, “Vacuum Ultraviolet Absorption Spectra of Solid N2O and CO2 at 53K,” J. Chem. Phys. 63, 1676 (1975).
    [Crossref]
  25. B. A. Seiber, A. M. Smith, B. E. Wood, P. R. Muller, “Refractive Indices and Densities of H2O and CO2 Films Condensed on Cyrogenic Surfaces,” Appl. Opt. 10, 2086 (1971).
    [Crossref] [PubMed]
  26. R. S. Nakata, K. Watanabe, F. M. Matsunaga, “Absorption and Photoionization Coefficients of CO2 in the Region 580–1670 A,” Sci. Light 14, 54 (1965).
  27. H. Abe, R. Onaka, “Molecular Excitons of Solid Carbon Dioxide,” J. Phys. Soc. Jpn. 53, 1176 (1984).
    [Crossref]
  28. K. E. Tempelmeyer, D. W. Mills, “Refractive Index of Carbon Dioxide Cryodeposit,” J. Appl. Phys. 39, 2968 (1968).
    [Crossref]
  29. J. Kruger, W. J. Ambs, “Optical Measurements on Thin Films of Condensed Gases at Low Temperatures,” J. Opt. Soc. Am. 49, 1195 (1959).
    [Crossref]
  30. W. Schulze, H. Abe, “Density, Refractive Index and Sorption Capacity of Solid CO2 Layers,” Chem. Phys. 52, 381 (1980).
    [Crossref]
  31. B. E. Wood, J. A. Roux, “Infrared Optical Properties of Thin H2O, NH3, and CO2 Cryofilms,” J. Opt. Soc. Am. 72, 720 (1982).
    [Crossref]
  32. G. Sill, U. Fink, J. R. Ferraro, “Absorption Coefficients of Solid NH3 from 50 to 7000 cm−1,” J. Opt. Soc. Am. 70, 724 (1980).
    [Crossref]
  33. H. Yamada, W. B. Person, “Absolute Infrared Intensities of the Fundamental Absorption Bands in Solid CS2,” J. Chem. Phys. 40, 309 (1964).
    [Crossref]
  34. J. A. Roux, B. E. Wood, A. M. Smith, “IR Optical Properties of Thin H2O, NH3, and CO2 Cryofilms,” Arnold Engineering Development Center Tech. Rep. AEDC-TR-79-57 (1979);NTIS accession number AD-A074913.
  35. D. A. Dows, V. Schettino, “Two-Phonon Infrared Absorption Spectra in Crystalline Carbon Dioxide,” J. Chem. Phys. 58, 5009 (1973).
    [Crossref]
  36. J. T. Houghton, The Physics of Atmospheres (Cambridge U.P., Cambridge, 1977).
  37. M. E. Jacox, D. E. Milligan, “The Infrared Spectra of Thick Films of CO2 and CO2 + H2O at Low Temperatures,” Spectrochim. Acta 17, 1196 (1961).
    [Crossref]
  38. W. L. Wolfe, Handbook of Military Infrared Technology (U.S. GPO, Washington, D.C., 1965).
  39. T. S. Kuan, “I. Lattice Vibrations of Solid α-Nitrogen and Atom-Atom Intermolecular Potential. II. Intensities of the Far-Infrared Absorption Lines of Solid Carbon Dioxide,” Ph.D. Thesis, U. Southern California, Los Angeles (1969).
  40. K. G. Brown, W. T. King, “Infrared Intensities of the Lattice Modes of Solid Carbon Dioxide,” J. Chem. Phys. 52, 4437 (1970).
    [Crossref]
  41. R. A. Simpson, B. C. Fair, H. T. Howard, “Microwave Properties of Solid CO2,” J. Geophys. Res. 85, 5481 (1980).
    [Crossref]

1984 (3)

S. G. Warren, “Optical Constants of Ice from the Ultraviolet to the Microwave,” Appl. Opt. 23, 1206 (1984).
[Crossref] [PubMed]

J. H. Fock, H. J. Lau, E. E. Koch, “Electronic Band Structure of Solid CO2 as Determined from the hν-Dependence of Photoelectron Emission,” Chem. Phys. 83, 377 (1984).
[Crossref]

H. Abe, R. Onaka, “Molecular Excitons of Solid Carbon Dioxide,” J. Phys. Soc. Jpn. 53, 1176 (1984).
[Crossref]

1983 (1)

L. G. Liu, “Dry Ice II, a New Polymorph of CO2,” Nature London 303, 508 (1983).
[Crossref]

1982 (2)

J. B. Pollack, O. B. Toon, “Quasi-Periodic Climate Changes on Mars: A Review,” Icarus 50, 259 (1982).
[Crossref]

B. E. Wood, J. A. Roux, “Infrared Optical Properties of Thin H2O, NH3, and CO2 Cryofilms,” J. Opt. Soc. Am. 72, 720 (1982).
[Crossref]

1980 (3)

G. Sill, U. Fink, J. R. Ferraro, “Absorption Coefficients of Solid NH3 from 50 to 7000 cm−1,” J. Opt. Soc. Am. 70, 724 (1980).
[Crossref]

W. Schulze, H. Abe, “Density, Refractive Index and Sorption Capacity of Solid CO2 Layers,” Chem. Phys. 52, 381 (1980).
[Crossref]

R. A. Simpson, B. C. Fair, H. T. Howard, “Microwave Properties of Solid CO2,” J. Geophys. Res. 85, 5481 (1980).
[Crossref]

1979 (1)

R. Ditteon, H. H. Kieffer, “Optical Properties of Solid CO2: Application to Mars,” J. Geophys. Res. 84, 8294 (1979).
[Crossref]

1975 (1)

K. M. Monahan, W. C. Walker, “Vacuum Ultraviolet Absorption Spectra of Solid N2O and CO2 at 53K,” J. Chem. Phys. 63, 1676 (1975).
[Crossref]

1974 (1)

K. M. Monahan, W. C. Walker, “Photoabsorption of Solid Carbon Dioxide from 7 to 12 eV,” J. Chem. Phys. 61, 3886 (1974).
[Crossref]

1973 (1)

D. A. Dows, V. Schettino, “Two-Phonon Infrared Absorption Spectra in Crystalline Carbon Dioxide,” J. Chem. Phys. 58, 5009 (1973).
[Crossref]

1972 (2)

L. Mannik, E. J. Allin, “The (ν1,2ν2) Vibron-Phonon Infrared Absorption Band of Solid CO2,” Can. J. Phys. 50, 2105 (1972).
[Crossref]

E. E. Koch, M. Skibowski, “Electronic Excitation of Solid Carbon Dioxidein the Extreme Ultraviolet,” Chem. Phys. Lett. 14, 37 (1972).
[Crossref]

1971 (2)

1970 (2)

J. Daniels, “Optical Constants of the Solid Atmospheric Gases N2, O2 and CO2,” Opt. Commun. 2, 352 (1970).
[Crossref]

K. G. Brown, W. T. King, “Infrared Intensities of the Lattice Modes of Solid Carbon Dioxide,” J. Chem. Phys. 52, 4437 (1970).
[Crossref]

1969 (1)

1968 (1)

K. E. Tempelmeyer, D. W. Mills, “Refractive Index of Carbon Dioxide Cryodeposit,” J. Appl. Phys. 39, 2968 (1968).
[Crossref]

1965 (2)

G. Andermann, A. Caron, D. A. Dows, “Kramers-Kronig Dispersion Analysis of Infrared Reflectance Bands,” J. Opt. Soc. Am. 55, 1210 (1965).
[Crossref]

R. S. Nakata, K. Watanabe, F. M. Matsunaga, “Absorption and Photoionization Coefficients of CO2 in the Region 580–1670 A,” Sci. Light 14, 54 (1965).

1964 (2)

H. Yamada, W. B. Person, “Absolute Infrared Intensities of the Fundamental Absorption Bands in Solid CO2 and N2O,” J. Chem. Phys. 41, 2478 (1964).
[Crossref]

H. Yamada, W. B. Person, “Absolute Infrared Intensities of the Fundamental Absorption Bands in Solid CS2,” J. Chem. Phys. 40, 309 (1964).
[Crossref]

1961 (1)

M. E. Jacox, D. E. Milligan, “The Infrared Spectra of Thick Films of CO2 and CO2 + H2O at Low Temperatures,” Spectrochim. Acta 17, 1196 (1961).
[Crossref]

1959 (1)

1900 (1)

U. Behn, “Ueber die Dichte der Kohlenäure im festen und flüssigen Zustande,” Ann. Phys. 308, 733 (1900).
[Crossref]

Abe, H.

H. Abe, R. Onaka, “Molecular Excitons of Solid Carbon Dioxide,” J. Phys. Soc. Jpn. 53, 1176 (1984).
[Crossref]

W. Schulze, H. Abe, “Density, Refractive Index and Sorption Capacity of Solid CO2 Layers,” Chem. Phys. 52, 381 (1980).
[Crossref]

Allin, E. J.

L. Mannik, E. J. Allin, “The (ν1,2ν2) Vibron-Phonon Infrared Absorption Band of Solid CO2,” Can. J. Phys. 50, 2105 (1972).
[Crossref]

Ambs, W. J.

Andermann, G.

Behn, U.

U. Behn, “Ueber die Dichte der Kohlenäure im festen und flüssigen Zustande,” Ann. Phys. 308, 733 (1900).
[Crossref]

Blest-Castillo, R. A.

R. A. Blest-Castillo, “Infrared Absorption of Solid Carbon Dioxide in the Frequency Range 1100 cm−1-1600 cm#x02212;1,” M.S. Thesis, U. Toronto, Canada (1970).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 628–629.

Brown, K. G.

K. G. Brown, W. T. King, “Infrared Intensities of the Lattice Modes of Solid Carbon Dioxide,” J. Chem. Phys. 52, 4437 (1970).
[Crossref]

Caron, A.

Daniels, J.

J. Daniels, “Optical Constants of the Solid Atmospheric Gases N2, O2 and CO2,” Opt. Commun. 2, 352 (1970).
[Crossref]

J. Daniels, C. v. Festenberg, H. Raether, K. Zeppenfeld, “Optical Constants of Solids by Electron Spectroscopy,” in Springer Tracts in Modern Physics, Vol. 54 (Springer-Verlag, Heidelberg, 1970), p. 78.
[Crossref]

Ditteon, R.

R. Ditteon, H. H. Kieffer, “Optical Properties of Solid CO2: Application to Mars,” J. Geophys. Res. 84, 8294 (1979).
[Crossref]

Dows, D. A.

D. A. Dows, V. Schettino, “Two-Phonon Infrared Absorption Spectra in Crystalline Carbon Dioxide,” J. Chem. Phys. 58, 5009 (1973).
[Crossref]

G. Andermann, A. Caron, D. A. Dows, “Kramers-Kronig Dispersion Analysis of Infrared Reflectance Bands,” J. Opt. Soc. Am. 55, 1210 (1965).
[Crossref]

Egan, W. G.

Fair, B. C.

R. A. Simpson, B. C. Fair, H. T. Howard, “Microwave Properties of Solid CO2,” J. Geophys. Res. 85, 5481 (1980).
[Crossref]

Ferraro, J. R.

Festenberg, C. v.

J. Daniels, C. v. Festenberg, H. Raether, K. Zeppenfeld, “Optical Constants of Solids by Electron Spectroscopy,” in Springer Tracts in Modern Physics, Vol. 54 (Springer-Verlag, Heidelberg, 1970), p. 78.
[Crossref]

Fink, U.

G. Sill, U. Fink, J. R. Ferraro, “Absorption Coefficients of Solid NH3 from 50 to 7000 cm−1,” J. Opt. Soc. Am. 70, 724 (1980).
[Crossref]

U. Fink, G. T. Sill, “The Infrared Spectral Properties of Frozen Volatiles,” in Comets, L. L. Wilkening, Ed. (U. of Arizona Press, Tucson, 1982), pp. 164–202.

Fock, J. H.

J. H. Fock, H. J. Lau, E. E. Koch, “Electronic Band Structure of Solid CO2 as Determined from the hν-Dependence of Photoelectron Emission,” Chem. Phys. 83, 377 (1984).
[Crossref]

Gaizauskas, V.

V. Gaizauskas, “Studies of the Infrared and Raman Spectra of Gaseous, Liquid and Solid Carbon Dioxide,” Ph.D. Thesis, U Toronto, Canada (1955).

Hartshorne, N. H.

N. H. Hartshorne, A. Stuart, Crystals and the Polarizing Microscope (Edward Arnold, London, 1970), p. 19.

Houghton, J. T.

J. T. Houghton, The Physics of Atmospheres (Cambridge U.P., Cambridge, 1977).

Howard, H. T.

R. A. Simpson, B. C. Fair, H. T. Howard, “Microwave Properties of Solid CO2,” J. Geophys. Res. 85, 5481 (1980).
[Crossref]

Jacox, M. E.

M. E. Jacox, D. E. Milligan, “The Infrared Spectra of Thick Films of CO2 and CO2 + H2O at Low Temperatures,” Spectrochim. Acta 17, 1196 (1961).
[Crossref]

Kieffer, H. H.

R. Ditteon, H. H. Kieffer, “Optical Properties of Solid CO2: Application to Mars,” J. Geophys. Res. 84, 8294 (1979).
[Crossref]

King, W. T.

K. G. Brown, W. T. King, “Infrared Intensities of the Lattice Modes of Solid Carbon Dioxide,” J. Chem. Phys. 52, 4437 (1970).
[Crossref]

Koch, E. E.

J. H. Fock, H. J. Lau, E. E. Koch, “Electronic Band Structure of Solid CO2 as Determined from the hν-Dependence of Photoelectron Emission,” Chem. Phys. 83, 377 (1984).
[Crossref]

E. E. Koch, M. Skibowski, “Electronic Excitation of Solid Carbon Dioxidein the Extreme Ultraviolet,” Chem. Phys. Lett. 14, 37 (1972).
[Crossref]

Koster, A. S.

A. S. Koster, “Oxygen K Emission Spectra of Ice, Solid Carbon Dioxide, and Solid Alcohols,” Appl. Phys. Lett. 18, 170 (1971).
[Crossref]

Kruger, J.

Kuan, T. S.

T. S. Kuan, “I. Lattice Vibrations of Solid α-Nitrogen and Atom-Atom Intermolecular Potential. II. Intensities of the Far-Infrared Absorption Lines of Solid Carbon Dioxide,” Ph.D. Thesis, U. Southern California, Los Angeles (1969).

Lau, H. J.

J. H. Fock, H. J. Lau, E. E. Koch, “Electronic Band Structure of Solid CO2 as Determined from the hν-Dependence of Photoelectron Emission,” Chem. Phys. 83, 377 (1984).
[Crossref]

Liu, L. G.

L. G. Liu, “Dry Ice II, a New Polymorph of CO2,” Nature London 303, 508 (1983).
[Crossref]

Mannik, L.

L. Mannik, E. J. Allin, “The (ν1,2ν2) Vibron-Phonon Infrared Absorption Band of Solid CO2,” Can. J. Phys. 50, 2105 (1972).
[Crossref]

Matsunaga, F. M.

R. S. Nakata, K. Watanabe, F. M. Matsunaga, “Absorption and Photoionization Coefficients of CO2 in the Region 580–1670 A,” Sci. Light 14, 54 (1965).

Milligan, D. E.

M. E. Jacox, D. E. Milligan, “The Infrared Spectra of Thick Films of CO2 and CO2 + H2O at Low Temperatures,” Spectrochim. Acta 17, 1196 (1961).
[Crossref]

Mills, D. W.

K. E. Tempelmeyer, D. W. Mills, “Refractive Index of Carbon Dioxide Cryodeposit,” J. Appl. Phys. 39, 2968 (1968).
[Crossref]

Monahan, K. M.

K. M. Monahan, W. C. Walker, “Vacuum Ultraviolet Absorption Spectra of Solid N2O and CO2 at 53K,” J. Chem. Phys. 63, 1676 (1975).
[Crossref]

K. M. Monahan, W. C. Walker, “Photoabsorption of Solid Carbon Dioxide from 7 to 12 eV,” J. Chem. Phys. 61, 3886 (1974).
[Crossref]

Muller, P. R.

Nakata, R. S.

R. S. Nakata, K. Watanabe, F. M. Matsunaga, “Absorption and Photoionization Coefficients of CO2 in the Region 580–1670 A,” Sci. Light 14, 54 (1965).

Onaka, R.

H. Abe, R. Onaka, “Molecular Excitons of Solid Carbon Dioxide,” J. Phys. Soc. Jpn. 53, 1176 (1984).
[Crossref]

Person, W. B.

H. Yamada, W. B. Person, “Absolute Infrared Intensities of the Fundamental Absorption Bands in Solid CS2,” J. Chem. Phys. 40, 309 (1964).
[Crossref]

H. Yamada, W. B. Person, “Absolute Infrared Intensities of the Fundamental Absorption Bands in Solid CO2 and N2O,” J. Chem. Phys. 41, 2478 (1964).
[Crossref]

Pollack, J. B.

J. B. Pollack, O. B. Toon, “Quasi-Periodic Climate Changes on Mars: A Review,” Icarus 50, 259 (1982).
[Crossref]

Raether, H.

J. Daniels, C. v. Festenberg, H. Raether, K. Zeppenfeld, “Optical Constants of Solids by Electron Spectroscopy,” in Springer Tracts in Modern Physics, Vol. 54 (Springer-Verlag, Heidelberg, 1970), p. 78.
[Crossref]

Roux, J. A.

B. E. Wood, J. A. Roux, “Infrared Optical Properties of Thin H2O, NH3, and CO2 Cryofilms,” J. Opt. Soc. Am. 72, 720 (1982).
[Crossref]

J. A. Roux, B. E. Wood, A. M. Smith, “IR Optical Properties of Thin H2O, NH3, and CO2 Cryofilms,” Arnold Engineering Development Center Tech. Rep. AEDC-TR-79-57 (1979);NTIS accession number AD-A074913.

Schettino, V.

D. A. Dows, V. Schettino, “Two-Phonon Infrared Absorption Spectra in Crystalline Carbon Dioxide,” J. Chem. Phys. 58, 5009 (1973).
[Crossref]

Schulze, W.

W. Schulze, H. Abe, “Density, Refractive Index and Sorption Capacity of Solid CO2 Layers,” Chem. Phys. 52, 381 (1980).
[Crossref]

Seiber, B. A.

Sill, G.

Sill, G. T.

U. Fink, G. T. Sill, “The Infrared Spectral Properties of Frozen Volatiles,” in Comets, L. L. Wilkening, Ed. (U. of Arizona Press, Tucson, 1982), pp. 164–202.

Simpson, R. A.

R. A. Simpson, B. C. Fair, H. T. Howard, “Microwave Properties of Solid CO2,” J. Geophys. Res. 85, 5481 (1980).
[Crossref]

Skibowski, M.

E. E. Koch, M. Skibowski, “Electronic Excitation of Solid Carbon Dioxidein the Extreme Ultraviolet,” Chem. Phys. Lett. 14, 37 (1972).
[Crossref]

Smith, A. M.

B. A. Seiber, A. M. Smith, B. E. Wood, P. R. Muller, “Refractive Indices and Densities of H2O and CO2 Films Condensed on Cyrogenic Surfaces,” Appl. Opt. 10, 2086 (1971).
[Crossref] [PubMed]

J. A. Roux, B. E. Wood, A. M. Smith, “IR Optical Properties of Thin H2O, NH3, and CO2 Cryofilms,” Arnold Engineering Development Center Tech. Rep. AEDC-TR-79-57 (1979);NTIS accession number AD-A074913.

Spagnolo, F. A.

Stern, F.

F. Stern, “Elementary Theory of the Optical Properties of Solids,” in Solid State Physics, Vol. 15 (Academic, New York, 1963), p. 300.
[Crossref]

Stuart, A.

N. H. Hartshorne, A. Stuart, Crystals and the Polarizing Microscope (Edward Arnold, London, 1970), p. 19.

Tempelmeyer, K. E.

K. E. Tempelmeyer, D. W. Mills, “Refractive Index of Carbon Dioxide Cryodeposit,” J. Appl. Phys. 39, 2968 (1968).
[Crossref]

Toon, O. B.

J. B. Pollack, O. B. Toon, “Quasi-Periodic Climate Changes on Mars: A Review,” Icarus 50, 259 (1982).
[Crossref]

Walker, W. C.

K. M. Monahan, W. C. Walker, “Vacuum Ultraviolet Absorption Spectra of Solid N2O and CO2 at 53K,” J. Chem. Phys. 63, 1676 (1975).
[Crossref]

K. M. Monahan, W. C. Walker, “Photoabsorption of Solid Carbon Dioxide from 7 to 12 eV,” J. Chem. Phys. 61, 3886 (1974).
[Crossref]

Warren, S. G.

S. G. Warren, “Optical Constants of Ice from the Ultraviolet to the Microwave,” Appl. Opt. 23, 1206 (1984).
[Crossref] [PubMed]

S. G. Warren, W. J. Wiscombe, “Spectral Albedo and Emissivity of CO2-Frost in Martian Polar Caps: Model Results,” Icarus (submitted).

Watanabe, K.

R. S. Nakata, K. Watanabe, F. M. Matsunaga, “Absorption and Photoionization Coefficients of CO2 in the Region 580–1670 A,” Sci. Light 14, 54 (1965).

Wiscombe, W. J.

S. G. Warren, W. J. Wiscombe, “Spectral Albedo and Emissivity of CO2-Frost in Martian Polar Caps: Model Results,” Icarus (submitted).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 628–629.

Wolfe, W. L.

W. L. Wolfe, Handbook of Military Infrared Technology (U.S. GPO, Washington, D.C., 1965).

Wood, B. E.

Wyckoff, R. W. G.

R. W. G. Wyckoff, Crystal Structures, Vol. 1 (Wiley, New York, 1963). p. 368.

Yamada, H.

H. Yamada, W. B. Person, “Absolute Infrared Intensities of the Fundamental Absorption Bands in Solid CO2 and N2O,” J. Chem. Phys. 41, 2478 (1964).
[Crossref]

H. Yamada, W. B. Person, “Absolute Infrared Intensities of the Fundamental Absorption Bands in Solid CS2,” J. Chem. Phys. 40, 309 (1964).
[Crossref]

Zeppenfeld, K.

J. Daniels, C. v. Festenberg, H. Raether, K. Zeppenfeld, “Optical Constants of Solids by Electron Spectroscopy,” in Springer Tracts in Modern Physics, Vol. 54 (Springer-Verlag, Heidelberg, 1970), p. 78.
[Crossref]

Ann. Phys. (1)

U. Behn, “Ueber die Dichte der Kohlenäure im festen und flüssigen Zustande,” Ann. Phys. 308, 733 (1900).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

A. S. Koster, “Oxygen K Emission Spectra of Ice, Solid Carbon Dioxide, and Solid Alcohols,” Appl. Phys. Lett. 18, 170 (1971).
[Crossref]

Can. J. Phys. (1)

L. Mannik, E. J. Allin, “The (ν1,2ν2) Vibron-Phonon Infrared Absorption Band of Solid CO2,” Can. J. Phys. 50, 2105 (1972).
[Crossref]

Chem. Phys. (2)

J. H. Fock, H. J. Lau, E. E. Koch, “Electronic Band Structure of Solid CO2 as Determined from the hν-Dependence of Photoelectron Emission,” Chem. Phys. 83, 377 (1984).
[Crossref]

W. Schulze, H. Abe, “Density, Refractive Index and Sorption Capacity of Solid CO2 Layers,” Chem. Phys. 52, 381 (1980).
[Crossref]

Chem. Phys. Lett. (1)

E. E. Koch, M. Skibowski, “Electronic Excitation of Solid Carbon Dioxidein the Extreme Ultraviolet,” Chem. Phys. Lett. 14, 37 (1972).
[Crossref]

Icarus (1)

J. B. Pollack, O. B. Toon, “Quasi-Periodic Climate Changes on Mars: A Review,” Icarus 50, 259 (1982).
[Crossref]

J. Appl. Phys. (1)

K. E. Tempelmeyer, D. W. Mills, “Refractive Index of Carbon Dioxide Cryodeposit,” J. Appl. Phys. 39, 2968 (1968).
[Crossref]

J. Chem. Phys. (6)

H. Yamada, W. B. Person, “Absolute Infrared Intensities of the Fundamental Absorption Bands in Solid CS2,” J. Chem. Phys. 40, 309 (1964).
[Crossref]

D. A. Dows, V. Schettino, “Two-Phonon Infrared Absorption Spectra in Crystalline Carbon Dioxide,” J. Chem. Phys. 58, 5009 (1973).
[Crossref]

K. M. Monahan, W. C. Walker, “Vacuum Ultraviolet Absorption Spectra of Solid N2O and CO2 at 53K,” J. Chem. Phys. 63, 1676 (1975).
[Crossref]

H. Yamada, W. B. Person, “Absolute Infrared Intensities of the Fundamental Absorption Bands in Solid CO2 and N2O,” J. Chem. Phys. 41, 2478 (1964).
[Crossref]

K. M. Monahan, W. C. Walker, “Photoabsorption of Solid Carbon Dioxide from 7 to 12 eV,” J. Chem. Phys. 61, 3886 (1974).
[Crossref]

K. G. Brown, W. T. King, “Infrared Intensities of the Lattice Modes of Solid Carbon Dioxide,” J. Chem. Phys. 52, 4437 (1970).
[Crossref]

J. Geophys. Res. (2)

R. A. Simpson, B. C. Fair, H. T. Howard, “Microwave Properties of Solid CO2,” J. Geophys. Res. 85, 5481 (1980).
[Crossref]

R. Ditteon, H. H. Kieffer, “Optical Properties of Solid CO2: Application to Mars,” J. Geophys. Res. 84, 8294 (1979).
[Crossref]

J. Opt. Soc. Am. (4)

J. Phys. Soc. Jpn. (1)

H. Abe, R. Onaka, “Molecular Excitons of Solid Carbon Dioxide,” J. Phys. Soc. Jpn. 53, 1176 (1984).
[Crossref]

Nature London (1)

L. G. Liu, “Dry Ice II, a New Polymorph of CO2,” Nature London 303, 508 (1983).
[Crossref]

Opt. Commun. (1)

J. Daniels, “Optical Constants of the Solid Atmospheric Gases N2, O2 and CO2,” Opt. Commun. 2, 352 (1970).
[Crossref]

Sci. Light (1)

R. S. Nakata, K. Watanabe, F. M. Matsunaga, “Absorption and Photoionization Coefficients of CO2 in the Region 580–1670 A,” Sci. Light 14, 54 (1965).

Spectrochim. Acta (1)

M. E. Jacox, D. E. Milligan, “The Infrared Spectra of Thick Films of CO2 and CO2 + H2O at Low Temperatures,” Spectrochim. Acta 17, 1196 (1961).
[Crossref]

Other (13)

W. L. Wolfe, Handbook of Military Infrared Technology (U.S. GPO, Washington, D.C., 1965).

T. S. Kuan, “I. Lattice Vibrations of Solid α-Nitrogen and Atom-Atom Intermolecular Potential. II. Intensities of the Far-Infrared Absorption Lines of Solid Carbon Dioxide,” Ph.D. Thesis, U. Southern California, Los Angeles (1969).

F. Stern, “Elementary Theory of the Optical Properties of Solids,” in Solid State Physics, Vol. 15 (Academic, New York, 1963), p. 300.
[Crossref]

J. T. Houghton, The Physics of Atmospheres (Cambridge U.P., Cambridge, 1977).

J. A. Roux, B. E. Wood, A. M. Smith, “IR Optical Properties of Thin H2O, NH3, and CO2 Cryofilms,” Arnold Engineering Development Center Tech. Rep. AEDC-TR-79-57 (1979);NTIS accession number AD-A074913.

J. Daniels, C. v. Festenberg, H. Raether, K. Zeppenfeld, “Optical Constants of Solids by Electron Spectroscopy,” in Springer Tracts in Modern Physics, Vol. 54 (Springer-Verlag, Heidelberg, 1970), p. 78.
[Crossref]

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), pp. 628–629.

R. W. G. Wyckoff, Crystal Structures, Vol. 1 (Wiley, New York, 1963). p. 368.

N. H. Hartshorne, A. Stuart, Crystals and the Polarizing Microscope (Edward Arnold, London, 1970), p. 19.

U. Fink, G. T. Sill, “The Infrared Spectral Properties of Frozen Volatiles,” in Comets, L. L. Wilkening, Ed. (U. of Arizona Press, Tucson, 1982), pp. 164–202.

S. G. Warren, W. J. Wiscombe, “Spectral Albedo and Emissivity of CO2-Frost in Martian Polar Caps: Model Results,” Icarus (submitted).

V. Gaizauskas, “Studies of the Infrared and Raman Spectra of Gaseous, Liquid and Solid Carbon Dioxide,” Ph.D. Thesis, U Toronto, Canada (1955).

R. A. Blest-Castillo, “Infrared Absorption of Solid Carbon Dioxide in the Frequency Range 1100 cm−1-1600 cm#x02212;1,” M.S. Thesis, U. Toronto, Canada (1970).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Imaginary refractive index of CO2 ice in the UV. Our compilation uses the values of Daniels scaled down by 4% to obtain the observed mRe in the visible, as explained in Sec. VII.A.

Fig. 2
Fig. 2

Real refractive index of CO2 ice in the visible and near visible. Open circles with error bars, Egan and Spagnolo9; solid circle with error bar, Yamada and Person7; triangles with error bars, Tempelmeyer and Mills,28 with the dashed line showing their fit to the data; +, Seiber et al.25 with solid line showing their fit to the data; ×, Kruger and Ambs29 measurements at two condensation temperatures; □, Schulze and Abe30 condensed at the temperatures indicated. (Their measurements were made at many temperatures, but only six representative points are shown here.) ■, Wood and Roux,31 measurements at two condensation temperatures. Our compilation uses the upper solid line, fitting the measurements of Seiber et al., to obtain a reference value of mRe = 1.404 at λ = 1.0 μm for use in the Kramers-Kronig analysis.

Fig. 3
Fig. 3

Imaginary refractive index of CO2 ice in the visible and near visible. Measurements were made by Egan and Spagnolo9 at the six wavelengths indicated; the solid line is their interpolation.

Fig. 4
Fig. 4

Imaginary index of refraction of CO2 ice in the near infrared. The four narrow lines measured by Fink and Sill5 near 1.4 and 2.0 μm are resolved with an expanded scale in Fig. 5. The individual data points of Wood and Roux31 are not shown; our smoothed fit to them (dashed line) was not drawn to match them in detail because Wood and Roux’s measured values of mIm are very uncertain when they are below 10−3. Ditteon and Kieffer’s14 (DK’s) published mIm is shown as the dotted line; our reanalysis of DK’s transmission data as a solid line; and the maximum possible mIm from DK’s data (i.e., assuming no scattering by their sample) as the line of plus signs. The reanalysis used the scattering coefficients plotted in Fig. 11. Our compilation uses the extrapolation from Egan and Spagnolo9 (dashed line), the four narrow lines of Fink and Sill,5 and the reanalysis of Ditteon and Kieffer (solid lines at the right). Data of Wood and Roux31 are used between 2.68 and 2.782 μm; interpolation is described in the text.

Fig. 5
Fig. 5

Details of the four narrow near-IR absorption lines near 1.4 and 2.0 μm. Our compilation uses the dashed lines which we fit to the data points of Fink and Sill.5 In drawing the lines we ignore the low-valued data points in the wings because of their large uncertainty. Numerical values were kindly supplied by U. Fink (personal communication) with the caution that they are preliminary.

Fig. 6
Fig. 6

Imaginary refractive index of CO2 ice in the 2.7-μm absorption band. Fink and Sill’s5 measurements are the open circles; the dashed line is our fit to those points. The compilation uses the data of Wood and Roux.31

Fig. 7
Fig. 7

Imaginary refractive index of CO2 ice in the 4.3-μm absorption band. Wood and Roux31 took into account the variation of real index across the band when analyzing transmission data to obtain these results; the other authors did not. Our reanalysis of Yamada and Person’s7 transmission data using Kramers-Kronig relations, described in the Appendix, resulted in the line of plus signs, which is used in the compilation.

Fig. 8
Fig. 8

Imaginary refractive index of CO2 ice in the 15-μm absorption band. Neither Fink and Sill5 nor Yamada and Person7 subjected their transmission data to Kramers-Kronig analysis. Reanalysis of Yamada and Person’s transmission data using Kramers-Kronig relations, described in Sec. VII.B, resulted in the solid line, which is used in the compilation.

Fig. 9
Fig. 9

Imaginary refractive index of CO2 ice in the near and middle IR. The three plots of results from Ditteon and Kieffer14 are described in the legend to Fig. 4 and the text. The compilation uses DK-reanalyzed (solid curves) from 2.85 to 3.9 μm, Wood and Roux31 (upper solid curves) from 4.0 to 4.17 μm and from 4.4 to 4.5 μm, DK-reanalyzed from 4.8 to 6.54 μm, and Gaizauskas11 from 6.64 to 8.76 μm.

Fig. 10
Fig. 10

Imaginary refractive index of CO2 ice in the middle infrared. The three plots of results from Ditteon and Kieffer14 are described in the legend to Fig. 4 and the text. The compilation uses Gaizauskas11 from 6.64 to 8.76 μm, DK-reanalyzed from 9.0 to 11.0 μm, Wood and Roux31 from 11.5 to 13.9 μm, Fink and Sill5 from 13.9 to 14.5 μm and 15.9 to 16.2 μm, and DK-reanalyzed from 17.9 to 25 μm.

Fig. 11
Fig. 11

Scattering coefficient kscat for Ditteon and Kieffer’s14 (DK’s) cloudy sample, used for reanalysis of DK’s transmission data resulting in the plots in Figs. 4, 9, and 10. DK’s data have already been shifted in wave number by 40 cm−1 (see text) before deriving this kscat(λ). The solid line is the function kscat(λ), which, when subtracted from DK’s observed extinction coefficient kext(λ), results in an absorption coefficient kabs(λ) that agrees with values of Gaizauskas11 (Fig. 9). The upper limit symbols at six wavelengths have their horizontal bases marking the values of kext at those wavelengths; kscat cannot exceed kext because that would cause kabs to be negative. The dashed line was used in the reanalysis of DK’s transmission data.

Fig. 12
Fig. 12

Imaginary refractive index of CO2 ice in the first far-IR absorption line.

Fig. 13
Fig. 13

Imaginary refractive index of CO2 ice in the second far-IR absorption line.

Fig. 14
Fig. 14

Compilation of real and imaginary parts of the refractive index of CO2 ice. Data sources and uncertainties are discussed in the text. These graphs are tabulated in Table I. Details of the strong absorption bands, which cannot be resolved in this figure, are shown as the solid lines in Fig. 15.

Fig. 15
Fig. 15

Details of the strong absorption bands of CO2 ice. The solid lines give the same values shown in Fig. 14 but are plotted here on an expanded wavelength scale; they are tabulated in Table I. The dashed line in (a) shows that the results of Daniels17 differ somewhat from the compilation, which applies Kramers-Kronig analysis to the mIm of Daniels, as discussed in Sec. VII.C. The short-dash lines in (a) and (b) are an alternative set of refractive-index values, using mIm as obtained by Koch and Skibowski19 (KS) and mIm as calculated here from KS’s mIm using KK analysis. This mRe differs somewhat from that obtained by KS (line of circles) as discussed in Sec. VII.C. The dashed lines in (c) and (d) are an alternative set of refractive-index values obtained by applying KK analysis to the mIm of Wood and Roux31 as discussed in Sec. VII.C; the mRe thus obtained agrees well with the mRe as reported by Wood and Roux (circles).

Fig. 16
Fig. 16

Solid line shows the difference in mRe(λ), outside the 43 μm band, obtained in the Kramers-Kronig analysis if the data of Wood and Roux31 (WR) are used in place of those of Yamada and Person7 (YP) for the 4.3-μm band. The large difference in mRe within the band exceeds the bounds of this figure and is shown in Fig. 15(c).

Tables (1)

Tables Icon

Table I Real (mRe) and Imaginary (mIm) parts of the complex Data sources and Index of refraction of CO2 Ice from 52-nm to 200-m wavelength (λ). uncertainties are discussed In the text. These values are graphed as the solid lines In Figs. 14 and 15. Blanks appear In the table where no data are available; these regions correspond to the gaps In Fig. 14. Values of mIm marked with asterisks are uncertain to more than an order of magnitude, as discussed In Secs. IV.B. and VII.C. Wavelengths were chosen for the tables to resolve adequately the variations In both real and Imaginary Indices. For Intermediate wavelengths not given In the table, one should Interpolate mre linearly In logλ and logmIm linearly In log λ. Table I Is on pages 2663–2667.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

m Re ( λ 0 ) = 1 + 2 λ 0 2 π P 0 m Im ( λ ) d λ λ ( λ 0 2 - λ 2 ) ,
k abs = ( 1 / d ) ln ( I B / I S ) ,
I s = ( 1 - r K ) 5 ( 1 - r KC ) ( 1 - r C ) exp ( - k ext d ) I 0 ;
I B = ( 1 - r K ) 6 I 0 .
k ext = k scat + k abs .
t = I s / I B .
k ext ( ν ) = ( - 1 / d ) ln t ( ν + 40 ) ( 1 - r K ) ( 1 - r K C ) ( 1 - r C ) ,
m Re ( ν ) = 1 + 2 π P 0 ν 2 m Im ( ν ) - ν ν m Im ( ν ) ν 2 - ν 2 d l n ν ,
- log [ t ( λ out ] = - log [ 1 - R ( λ out ) ] = { 0.072 for AgCl window 0.040 for CsBr window } ,
t R = ( 1 - R 3 ) ( 1 - R 2 ) ( 1 - R 1 ) ,
t A = exp ( - k abs d ) ,
t = t R t A 1 - R 1 R 2 + t R t A 3 1 - R 1 R 2 [ R 2 R 3 + R 1 R 3 ( 1 - R 2 ) 2 ] .
t A = ( 1 - R 1 R 2 ) t / t R .

Metrics