Abstract

Oxygen-broadened linewidths have been measured at room temperature using a method of laser spectroscopy. By combining these parameters with previously measured nitrogen-broadening values, air-broadening parameters have been derived. The averaged experimental data for self-, N2, and O2 broadening have been compared to theoretical values calculated on the basis of an improved semiclassical model previously used for N2O. Quite satisfactory agreement is observed up to J ≃ 50.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. R. Drayson et al., “Spectroscopy and Transmittance for the LIMS Experiment,” J. Geophys. Res. 89, 5141 (1984).
    [Crossref]
  2. J. C. Gille et al., “Validation of Temperature Retrievals Obtained by the Limb Infrared Monitor of the Stratosphere (LIMS) Experiment on Nimbus 7,” J. Geophys. Res. 89, 5147 (1984).
    [Crossref]
  3. L. S. Rothman, “AFGL Atmospheric Absorption Line Parameters Compilation: 1980 Version,” Appl. Opt. 20, 791 (1981).
    [Crossref] [PubMed]
  4. L. S. Rothman et al., “AFGL Atmospheric Absorption Line Parameters Compilation: 1982 Edition,” Appl. Opt. 22, 2247 (1983).
    [Crossref] [PubMed]
  5. N. Husson et al., “The GEISA Spectroscopic Line Parameters Data Bank in 1984,” Ann. Geophys. 4, 185 (1986).
  6. N. A. Scott, A. Chedin, “A Fast Line-by-Line Method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas,” J. Appl. Meteorol. 20, 802 (1981).
    [Crossref]
  7. S. R. Drayson, C. Young, “Band Strength and Line Half-width of the 10.4 μ CO2 Band,” J. Quant. Spectrosc. Radiat. Transfer 7, 993 (1967).
    [Crossref]
  8. T. K. McCubbin, T. R. Mooney, “A Study of the Strengths and Widths of Lines in the 9.4 and 10.4 μ CO2 Bands,” J. Quant. Spectrosc. Radiat. Transfer 8, 1255 (1968).
    [Crossref]
  9. L. D. Tubbs, D. Williams, “Broadening of Infrared Absorption Lines at Reduced Temperatures: Carbon Dioxide,” J. Opt. Soc. Am. 62, 284 (1972).
    [Crossref]
  10. E. Arié, N. Lacome, C. Rossetti, “Spectroscopie par Source Laser. 1. Etude Expérimentale des Intensités et Largeurs des Raies de la Transition 00°1-(10°,02°0)i de CO2,” Can. J. Phys. 50, 1800 (1972).
    [Crossref]
  11. C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par Source Laser II. Etude Expérimentale de l’Elargissement des Raies de la Transition 00°1-(10°0, 02°0)i de CO2 Perturbé par N2,” Can. J. Phys. 50, 2178 (1972).
    [Crossref]
  12. B. A. Boldyrev, K. P. Vasilevskii, “Intensity and Half-Width of CO2 Lines in the 14°1–00°0 Band,” Opt. Spectrosc. 35, 476 (1973).
  13. K. P. Vasilevskii, L. E. Danilochkina, V. A. Kazbanov, “Intensities and Halfwidths of CO2 lines in the Vibrational–Rotational Bands at 2 μm,” Opt. Spectrosc. 38, 499 (1975).
  14. C. Young, R. E. Chapman, “Line-Widths and Band Strengths for the 9.4 and 10.4 μm CO2 Bands,” J. Quant. Spectrosc. Radiat. Transfer 14, 679 (1974).
    [Crossref]
  15. C. Young, R. W. Bell, R. E. Chapman, “Variation of N2-Broadened Collisional Width with Rotational Quantum Number for the 10.4 μm CO2 Band,” Appl. Phys. Lett. 20, 278 (1972).
    [Crossref]
  16. R. A. Toth, “Wavenumbers, Strengths, and Self-Broadened Widths in CO2 at 3 μm,” J. Mol. Spectrosc. 53, 1 (1974).
    [Crossref]
  17. T. W. Meyer, C. K. Rhodes, H. A. Haus, “High-Resolution Line Broadening and Collisional Studies in CO2 Using Nonlinear Spectroscopic Techniques,” Phys. Rev. A 12, 1993 (1975).
    [Crossref]
  18. H. Oodate, T. Fujioka, “Measurements of 4.2 μm CO2 Pressure Broadening by Using an HBr Chemical Laser,” J. Chem. Phys. 68, 5494 (1978).
    [Crossref]
  19. R. S. Eng, A. W. Mantz, “Tunable Diode Laser Spectroscopy of CO2 in the 10- to 15 μm Spectral Region,” J. Mol. Spectrosc. 74, 331 (1979).
    [Crossref]
  20. F. P. J. Valero, C. B. Suarez, “Measurement at Different Temperatures of Absolute Intensities Line Half-Widths, and Broadening by Ar and N2 for the 30°1ii ← 00°0 Band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 19, 579 (1978).
    [Crossref]
  21. F. P. J. Valero, C. B. Suarez, R. W. Boese, “Intensities and Half-Widths at Different Temperatures for the 201iii ← 000 band of CO2 at 4854 cm−1,” J. Quant. Spectrosc. Radiat. Transfer 22, 93 (1979); “Absolute Intensities and Pressure Broadening Coefficients Measured at Different Temperatures for the 201ii ← 000 Band of 12C16O2 at 4978 cm−1”; 23, 337 (1980).
    [Crossref] [PubMed]
  22. C. B. Suarez, F. P. J. Valero, “Intensities, Self-Broadening, and Broadening by Ar and N2 for the 301iii ← 000 Band of CO2 Measured at Different Temperatures,” J. Mol. Spectrosc. 71, 46 (1978).
    [Crossref]
  23. M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the Parameters of the Vibrational–Rotational Lines in the 9.4 and 10.4 μm Bands of CO2 at Different Temperatures,” Opt. Spectrosc. 48, 403 (1980).
  24. V. Malathy Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Diode Laser Measurements of Strengths, Half-Widths, and Temperature Dependence of Half-Widths for CO2 Spectral Lines Near 4.5 μm,” J. Mol. Spectrosc. 105, 61 (1984).
    [Crossref]
  25. W. G. Planet, G. L. Tettemer, J. S. Knoll, “Temperature Dependence of Intensities and Widths of N2-Broadened Lines in the 15 μm CO2 Band from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 20, 547 (1978).
    [Crossref]
  26. W. G. Planet, G. L. Tettemer “Temperature-Dependent Intensities and Widths of N2-Broadened CO2 Lines at 15 μm from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 22, 345 (1979).
    [Crossref]
  27. G. L. Tettemer, W. G. Planet, “Intensities and Pressure-Broadened Widths of CO2 R-Branch Lines at 15 μm from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 24, 343 (1980).
    [Crossref]
  28. W. G. Planet, J. R. Aronson, J. F. Butler, “Measurements of the Widths and Strengths of Low-J Lines of the ν2 Q Branch of CO2,” J. Mol. Spectrosc. 54, 331 (1975).
    [Crossref]
  29. R. A. McClatchey et al., “AFCRL Atmospheric Absorption Line Parameters Compilation,” Environmental Research Paper 434, AFCRL-TR-73-0096 (AFCRL, Bedford, MA, Jan.1973).
  30. R. R. Gamache, R. W. Davies, “Theoretical N2-, O2-, and Air Broadened Halfwidths of 16O3 Calculated by Quantum Fourier Transform Theory with Realistic Collision Dynamics,” J. Mol. Spectrosc. 109, 283 (1985).
    [Crossref]
  31. J. L. Bufton, T. Itabe, L. L. Strow, C. L. Korb, B. M. Gentry, C. Y. Weng, “Frequency-Doubled CO2 Lidar Measurement and Diode Laser Spectroscopy of Atmospheric CO2,” Appl. Opt. 22, 2592 (1983).
    [Crossref] [PubMed]
  32. N. Lacome, A. Levy, C. Boulet, “Air-Broadened Linewidths of Nitrous Oxide: An Improved Calculation,” J. Mol. Spectrosc. 97, 139 (1983).
    [Crossref]
  33. N. Lacome, A. Levy, G. Guelachvili, “Fourier Transform Measurement of Self-, N2, and O2-broadening of N2O lines: Temperature Dependence of Linewidths,” Appl. Opt. 23, 425 (1984).
    [Crossref] [PubMed]
  34. P. Arcas, E. Arié, C. Boulet, J. P. Maillard, “Self-Shifting of CO2 Lines in the 3ν3 Band at 1.43 μm,” J. Chem. Phys. 73, 5383 (1980).
    [Crossref]
  35. W. A. Wensing, C. Noorman, H. A. Dijkerman, “Self-Broadening and Self-Shifting of Some Rotational Transitions of CF3H and N2O,” J. Phys. B 12, 1687 (1979).
    [Crossref]
  36. S. C. M. Luijendink, “On the Shape of Pressure-Broadened Absorpion Lines in the Microwave Region II. Collision-Induced Width and Shift of Some Rotational Absorption Lines as a Function of Temperature,” J. Phys. B. 10, 1741 (1977).
    [Crossref]
  37. W. A. Wensing, C. Noorman, H. A. Dijkerman, “Self-Shifting of Some Rotational Transitions of OCS and CH3CCH (Propyne). A Survey of Measurements on Shifting of Rotational Absorption Lines of Molecules,” J. Phys. B 14, 2813 (1981).
    [Crossref]
  38. C. Thiébeaux, “Realisation d’une source monochromatique continue dans la région de 5 microns, par doublage des fréquences des raies d’un laser CO2, dans un cristal de tellure,” These 3ème cycle, Reims (1980).
  39. E. Arié, “Intensités et largeurs de raies de rotation-vibration de la transition, ν3–ν1 du gaz carbonique pur et perturbé par l‘argon et e’ azote,” U. Paris VI (1971).
  40. H. G. Reichle, C. Young, “Foreign-Gas-Broadening Effects in the 15 μm CO2 Bands,” Can. J. Phys. 50, 2662 (1972).
    [Crossref]
  41. D. E. Burch, E. B. Singleton, D. Williams, “Absorption Line Broadening in the IR,” Appl. Opt. 1, 359 (1962).
    [Crossref]
  42. N. Lacome, A. Levy, “A Parametric Deconvolution Method: Application to Two Bands of N2O in the 1.9 μm Region,” J. Mol. Spectrosc. 71, 175 (1978); “Line Strengths and Self-Broadened Linewidths of N2O in the 2 μm Region,” 85, 205 (1981) and references quoted therein.
    [Crossref]
  43. C. Cousin, R. LeDoucen, J. P. Houdeau, C. Boulet, A. Henry, “Air Broadened Linewidths, Intensities and Spectral Line-shapes for CO2 at 4.3 μm in the Region of the AMTS Instrument,” Appl. Opt. 25, 2434 (1986).
    [Crossref] [PubMed]
  44. D. Robert, J. Bonamy, “Short Range Force Effects in Semi-classical Molecular Line Broadening Calculations,” J. Phys. 40, 923 (1979).
    [Crossref]
  45. P. W. Anderson, “Pressure Broadening in the Microwave and Infrared Regions,” Phys. Rev. 76, 647 (1949).
    [Crossref]
  46. C. J. Tsao, B. Curnutte, “Line-Widths of Pressure-Broadened Spectral Lines,” J. Quant. Spectrosc. Radiat. Transfer 2, 41 (1962).
    [Crossref]
  47. M. Oobatake, T. Ooi, “Determination of Energy Parameters in Lennard-Jones Potential from Second Virial Coefficients,” Prog. Theor. Phys. 48, 2132 (1972).
    [Crossref]
  48. D. E. Stogryn, A. P. Stogryn, “Molecular Multipole Moments,” Mol. Phys. 11, 371 (1966).
    [Crossref]
  49. R. P. Srivastava, H. R. Zaidi, “Self-Broadened Widths of Rotational Raman and Infrared Lines in CO2,” Can. J. Phys. 55, 549 (1977).
    [Crossref]
  50. R. D. Amos, A. D. Buckingham, J. H. Williams, “Theoretical Studies of the Collision-Induced Raman Spectrum of Carbon Dioxide,” Mol. Phys. 39, 1519 (1980).
    [Crossref]
  51. C. S. Murthy, K. Singer, I. R. McDonald, “Interaction Site Models for Carbon Dioxide,” Mol. Phys. 44, 135 (1981).
    [Crossref]
  52. L. Pandey, C. P. K. Reddy, K. L. Sarkar, “Intermolecular Potentials from NMR Data: H2–N2O and H2–CO2,” Can. J. Phys. 61, 664 (1983).
    [Crossref]
  53. M. A. Morrison, P. J. Hay, “Molecular Properties of N2 and CO2 as Functions of Nuclear Geometry: Polarizabilities, Quadrupole Moments, and Dipole Moments,” J. Chem. Phys. 70, 4034 (1979).
    [Crossref]
  54. J. E. Harries, “Temperature Dependence of Collison-Induced Absorption in Gaseous N2,” J. Opt. Soc. Am. 69, 386 (1979).
    [Crossref]

1986 (2)

1985 (1)

R. R. Gamache, R. W. Davies, “Theoretical N2-, O2-, and Air Broadened Halfwidths of 16O3 Calculated by Quantum Fourier Transform Theory with Realistic Collision Dynamics,” J. Mol. Spectrosc. 109, 283 (1985).
[Crossref]

1984 (4)

N. Lacome, A. Levy, G. Guelachvili, “Fourier Transform Measurement of Self-, N2, and O2-broadening of N2O lines: Temperature Dependence of Linewidths,” Appl. Opt. 23, 425 (1984).
[Crossref] [PubMed]

V. Malathy Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Diode Laser Measurements of Strengths, Half-Widths, and Temperature Dependence of Half-Widths for CO2 Spectral Lines Near 4.5 μm,” J. Mol. Spectrosc. 105, 61 (1984).
[Crossref]

S. R. Drayson et al., “Spectroscopy and Transmittance for the LIMS Experiment,” J. Geophys. Res. 89, 5141 (1984).
[Crossref]

J. C. Gille et al., “Validation of Temperature Retrievals Obtained by the Limb Infrared Monitor of the Stratosphere (LIMS) Experiment on Nimbus 7,” J. Geophys. Res. 89, 5147 (1984).
[Crossref]

1983 (4)

L. S. Rothman et al., “AFGL Atmospheric Absorption Line Parameters Compilation: 1982 Edition,” Appl. Opt. 22, 2247 (1983).
[Crossref] [PubMed]

J. L. Bufton, T. Itabe, L. L. Strow, C. L. Korb, B. M. Gentry, C. Y. Weng, “Frequency-Doubled CO2 Lidar Measurement and Diode Laser Spectroscopy of Atmospheric CO2,” Appl. Opt. 22, 2592 (1983).
[Crossref] [PubMed]

N. Lacome, A. Levy, C. Boulet, “Air-Broadened Linewidths of Nitrous Oxide: An Improved Calculation,” J. Mol. Spectrosc. 97, 139 (1983).
[Crossref]

L. Pandey, C. P. K. Reddy, K. L. Sarkar, “Intermolecular Potentials from NMR Data: H2–N2O and H2–CO2,” Can. J. Phys. 61, 664 (1983).
[Crossref]

1981 (4)

C. S. Murthy, K. Singer, I. R. McDonald, “Interaction Site Models for Carbon Dioxide,” Mol. Phys. 44, 135 (1981).
[Crossref]

W. A. Wensing, C. Noorman, H. A. Dijkerman, “Self-Shifting of Some Rotational Transitions of OCS and CH3CCH (Propyne). A Survey of Measurements on Shifting of Rotational Absorption Lines of Molecules,” J. Phys. B 14, 2813 (1981).
[Crossref]

L. S. Rothman, “AFGL Atmospheric Absorption Line Parameters Compilation: 1980 Version,” Appl. Opt. 20, 791 (1981).
[Crossref] [PubMed]

N. A. Scott, A. Chedin, “A Fast Line-by-Line Method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas,” J. Appl. Meteorol. 20, 802 (1981).
[Crossref]

1980 (4)

P. Arcas, E. Arié, C. Boulet, J. P. Maillard, “Self-Shifting of CO2 Lines in the 3ν3 Band at 1.43 μm,” J. Chem. Phys. 73, 5383 (1980).
[Crossref]

M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the Parameters of the Vibrational–Rotational Lines in the 9.4 and 10.4 μm Bands of CO2 at Different Temperatures,” Opt. Spectrosc. 48, 403 (1980).

G. L. Tettemer, W. G. Planet, “Intensities and Pressure-Broadened Widths of CO2 R-Branch Lines at 15 μm from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 24, 343 (1980).
[Crossref]

R. D. Amos, A. D. Buckingham, J. H. Williams, “Theoretical Studies of the Collision-Induced Raman Spectrum of Carbon Dioxide,” Mol. Phys. 39, 1519 (1980).
[Crossref]

1979 (7)

D. Robert, J. Bonamy, “Short Range Force Effects in Semi-classical Molecular Line Broadening Calculations,” J. Phys. 40, 923 (1979).
[Crossref]

M. A. Morrison, P. J. Hay, “Molecular Properties of N2 and CO2 as Functions of Nuclear Geometry: Polarizabilities, Quadrupole Moments, and Dipole Moments,” J. Chem. Phys. 70, 4034 (1979).
[Crossref]

J. E. Harries, “Temperature Dependence of Collison-Induced Absorption in Gaseous N2,” J. Opt. Soc. Am. 69, 386 (1979).
[Crossref]

W. G. Planet, G. L. Tettemer “Temperature-Dependent Intensities and Widths of N2-Broadened CO2 Lines at 15 μm from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 22, 345 (1979).
[Crossref]

F. P. J. Valero, C. B. Suarez, R. W. Boese, “Intensities and Half-Widths at Different Temperatures for the 201iii ← 000 band of CO2 at 4854 cm−1,” J. Quant. Spectrosc. Radiat. Transfer 22, 93 (1979); “Absolute Intensities and Pressure Broadening Coefficients Measured at Different Temperatures for the 201ii ← 000 Band of 12C16O2 at 4978 cm−1”; 23, 337 (1980).
[Crossref] [PubMed]

W. A. Wensing, C. Noorman, H. A. Dijkerman, “Self-Broadening and Self-Shifting of Some Rotational Transitions of CF3H and N2O,” J. Phys. B 12, 1687 (1979).
[Crossref]

R. S. Eng, A. W. Mantz, “Tunable Diode Laser Spectroscopy of CO2 in the 10- to 15 μm Spectral Region,” J. Mol. Spectrosc. 74, 331 (1979).
[Crossref]

1978 (5)

F. P. J. Valero, C. B. Suarez, “Measurement at Different Temperatures of Absolute Intensities Line Half-Widths, and Broadening by Ar and N2 for the 30°1ii ← 00°0 Band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 19, 579 (1978).
[Crossref]

H. Oodate, T. Fujioka, “Measurements of 4.2 μm CO2 Pressure Broadening by Using an HBr Chemical Laser,” J. Chem. Phys. 68, 5494 (1978).
[Crossref]

C. B. Suarez, F. P. J. Valero, “Intensities, Self-Broadening, and Broadening by Ar and N2 for the 301iii ← 000 Band of CO2 Measured at Different Temperatures,” J. Mol. Spectrosc. 71, 46 (1978).
[Crossref]

W. G. Planet, G. L. Tettemer, J. S. Knoll, “Temperature Dependence of Intensities and Widths of N2-Broadened Lines in the 15 μm CO2 Band from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 20, 547 (1978).
[Crossref]

N. Lacome, A. Levy, “A Parametric Deconvolution Method: Application to Two Bands of N2O in the 1.9 μm Region,” J. Mol. Spectrosc. 71, 175 (1978); “Line Strengths and Self-Broadened Linewidths of N2O in the 2 μm Region,” 85, 205 (1981) and references quoted therein.
[Crossref]

1977 (2)

R. P. Srivastava, H. R. Zaidi, “Self-Broadened Widths of Rotational Raman and Infrared Lines in CO2,” Can. J. Phys. 55, 549 (1977).
[Crossref]

S. C. M. Luijendink, “On the Shape of Pressure-Broadened Absorpion Lines in the Microwave Region II. Collision-Induced Width and Shift of Some Rotational Absorption Lines as a Function of Temperature,” J. Phys. B. 10, 1741 (1977).
[Crossref]

1975 (3)

W. G. Planet, J. R. Aronson, J. F. Butler, “Measurements of the Widths and Strengths of Low-J Lines of the ν2 Q Branch of CO2,” J. Mol. Spectrosc. 54, 331 (1975).
[Crossref]

T. W. Meyer, C. K. Rhodes, H. A. Haus, “High-Resolution Line Broadening and Collisional Studies in CO2 Using Nonlinear Spectroscopic Techniques,” Phys. Rev. A 12, 1993 (1975).
[Crossref]

K. P. Vasilevskii, L. E. Danilochkina, V. A. Kazbanov, “Intensities and Halfwidths of CO2 lines in the Vibrational–Rotational Bands at 2 μm,” Opt. Spectrosc. 38, 499 (1975).

1974 (2)

C. Young, R. E. Chapman, “Line-Widths and Band Strengths for the 9.4 and 10.4 μm CO2 Bands,” J. Quant. Spectrosc. Radiat. Transfer 14, 679 (1974).
[Crossref]

R. A. Toth, “Wavenumbers, Strengths, and Self-Broadened Widths in CO2 at 3 μm,” J. Mol. Spectrosc. 53, 1 (1974).
[Crossref]

1973 (1)

B. A. Boldyrev, K. P. Vasilevskii, “Intensity and Half-Width of CO2 Lines in the 14°1–00°0 Band,” Opt. Spectrosc. 35, 476 (1973).

1972 (6)

C. Young, R. W. Bell, R. E. Chapman, “Variation of N2-Broadened Collisional Width with Rotational Quantum Number for the 10.4 μm CO2 Band,” Appl. Phys. Lett. 20, 278 (1972).
[Crossref]

L. D. Tubbs, D. Williams, “Broadening of Infrared Absorption Lines at Reduced Temperatures: Carbon Dioxide,” J. Opt. Soc. Am. 62, 284 (1972).
[Crossref]

E. Arié, N. Lacome, C. Rossetti, “Spectroscopie par Source Laser. 1. Etude Expérimentale des Intensités et Largeurs des Raies de la Transition 00°1-(10°,02°0)i de CO2,” Can. J. Phys. 50, 1800 (1972).
[Crossref]

C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par Source Laser II. Etude Expérimentale de l’Elargissement des Raies de la Transition 00°1-(10°0, 02°0)i de CO2 Perturbé par N2,” Can. J. Phys. 50, 2178 (1972).
[Crossref]

H. G. Reichle, C. Young, “Foreign-Gas-Broadening Effects in the 15 μm CO2 Bands,” Can. J. Phys. 50, 2662 (1972).
[Crossref]

M. Oobatake, T. Ooi, “Determination of Energy Parameters in Lennard-Jones Potential from Second Virial Coefficients,” Prog. Theor. Phys. 48, 2132 (1972).
[Crossref]

1968 (1)

T. K. McCubbin, T. R. Mooney, “A Study of the Strengths and Widths of Lines in the 9.4 and 10.4 μ CO2 Bands,” J. Quant. Spectrosc. Radiat. Transfer 8, 1255 (1968).
[Crossref]

1967 (1)

S. R. Drayson, C. Young, “Band Strength and Line Half-width of the 10.4 μ CO2 Band,” J. Quant. Spectrosc. Radiat. Transfer 7, 993 (1967).
[Crossref]

1966 (1)

D. E. Stogryn, A. P. Stogryn, “Molecular Multipole Moments,” Mol. Phys. 11, 371 (1966).
[Crossref]

1962 (2)

C. J. Tsao, B. Curnutte, “Line-Widths of Pressure-Broadened Spectral Lines,” J. Quant. Spectrosc. Radiat. Transfer 2, 41 (1962).
[Crossref]

D. E. Burch, E. B. Singleton, D. Williams, “Absorption Line Broadening in the IR,” Appl. Opt. 1, 359 (1962).
[Crossref]

1949 (1)

P. W. Anderson, “Pressure Broadening in the Microwave and Infrared Regions,” Phys. Rev. 76, 647 (1949).
[Crossref]

Amos, R. D.

R. D. Amos, A. D. Buckingham, J. H. Williams, “Theoretical Studies of the Collision-Induced Raman Spectrum of Carbon Dioxide,” Mol. Phys. 39, 1519 (1980).
[Crossref]

Anderson, P. W.

P. W. Anderson, “Pressure Broadening in the Microwave and Infrared Regions,” Phys. Rev. 76, 647 (1949).
[Crossref]

Arcas, P.

P. Arcas, E. Arié, C. Boulet, J. P. Maillard, “Self-Shifting of CO2 Lines in the 3ν3 Band at 1.43 μm,” J. Chem. Phys. 73, 5383 (1980).
[Crossref]

Arié, E.

P. Arcas, E. Arié, C. Boulet, J. P. Maillard, “Self-Shifting of CO2 Lines in the 3ν3 Band at 1.43 μm,” J. Chem. Phys. 73, 5383 (1980).
[Crossref]

E. Arié, N. Lacome, C. Rossetti, “Spectroscopie par Source Laser. 1. Etude Expérimentale des Intensités et Largeurs des Raies de la Transition 00°1-(10°,02°0)i de CO2,” Can. J. Phys. 50, 1800 (1972).
[Crossref]

C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par Source Laser II. Etude Expérimentale de l’Elargissement des Raies de la Transition 00°1-(10°0, 02°0)i de CO2 Perturbé par N2,” Can. J. Phys. 50, 2178 (1972).
[Crossref]

E. Arié, “Intensités et largeurs de raies de rotation-vibration de la transition, ν3–ν1 du gaz carbonique pur et perturbé par l‘argon et e’ azote,” U. Paris VI (1971).

Aronson, J. R.

W. G. Planet, J. R. Aronson, J. F. Butler, “Measurements of the Widths and Strengths of Low-J Lines of the ν2 Q Branch of CO2,” J. Mol. Spectrosc. 54, 331 (1975).
[Crossref]

Bell, R. W.

C. Young, R. W. Bell, R. E. Chapman, “Variation of N2-Broadened Collisional Width with Rotational Quantum Number for the 10.4 μm CO2 Band,” Appl. Phys. Lett. 20, 278 (1972).
[Crossref]

Boese, R. W.

F. P. J. Valero, C. B. Suarez, R. W. Boese, “Intensities and Half-Widths at Different Temperatures for the 201iii ← 000 band of CO2 at 4854 cm−1,” J. Quant. Spectrosc. Radiat. Transfer 22, 93 (1979); “Absolute Intensities and Pressure Broadening Coefficients Measured at Different Temperatures for the 201ii ← 000 Band of 12C16O2 at 4978 cm−1”; 23, 337 (1980).
[Crossref] [PubMed]

Boldyrev, B. A.

B. A. Boldyrev, K. P. Vasilevskii, “Intensity and Half-Width of CO2 Lines in the 14°1–00°0 Band,” Opt. Spectrosc. 35, 476 (1973).

Bonamy, J.

D. Robert, J. Bonamy, “Short Range Force Effects in Semi-classical Molecular Line Broadening Calculations,” J. Phys. 40, 923 (1979).
[Crossref]

Bouanich, J. P.

C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par Source Laser II. Etude Expérimentale de l’Elargissement des Raies de la Transition 00°1-(10°0, 02°0)i de CO2 Perturbé par N2,” Can. J. Phys. 50, 2178 (1972).
[Crossref]

Boulet, C.

C. Cousin, R. LeDoucen, J. P. Houdeau, C. Boulet, A. Henry, “Air Broadened Linewidths, Intensities and Spectral Line-shapes for CO2 at 4.3 μm in the Region of the AMTS Instrument,” Appl. Opt. 25, 2434 (1986).
[Crossref] [PubMed]

N. Lacome, A. Levy, C. Boulet, “Air-Broadened Linewidths of Nitrous Oxide: An Improved Calculation,” J. Mol. Spectrosc. 97, 139 (1983).
[Crossref]

P. Arcas, E. Arié, C. Boulet, J. P. Maillard, “Self-Shifting of CO2 Lines in the 3ν3 Band at 1.43 μm,” J. Chem. Phys. 73, 5383 (1980).
[Crossref]

C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par Source Laser II. Etude Expérimentale de l’Elargissement des Raies de la Transition 00°1-(10°0, 02°0)i de CO2 Perturbé par N2,” Can. J. Phys. 50, 2178 (1972).
[Crossref]

Buckingham, A. D.

R. D. Amos, A. D. Buckingham, J. H. Williams, “Theoretical Studies of the Collision-Induced Raman Spectrum of Carbon Dioxide,” Mol. Phys. 39, 1519 (1980).
[Crossref]

Bufton, J. L.

Bulanin, M. O.

M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the Parameters of the Vibrational–Rotational Lines in the 9.4 and 10.4 μm Bands of CO2 at Different Temperatures,” Opt. Spectrosc. 48, 403 (1980).

Bulychev, V. P.

M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the Parameters of the Vibrational–Rotational Lines in the 9.4 and 10.4 μm Bands of CO2 at Different Temperatures,” Opt. Spectrosc. 48, 403 (1980).

Burch, D. E.

Butler, J. F.

W. G. Planet, J. R. Aronson, J. F. Butler, “Measurements of the Widths and Strengths of Low-J Lines of the ν2 Q Branch of CO2,” J. Mol. Spectrosc. 54, 331 (1975).
[Crossref]

Chapman, R. E.

C. Young, R. E. Chapman, “Line-Widths and Band Strengths for the 9.4 and 10.4 μm CO2 Bands,” J. Quant. Spectrosc. Radiat. Transfer 14, 679 (1974).
[Crossref]

C. Young, R. W. Bell, R. E. Chapman, “Variation of N2-Broadened Collisional Width with Rotational Quantum Number for the 10.4 μm CO2 Band,” Appl. Phys. Lett. 20, 278 (1972).
[Crossref]

Chedin, A.

N. A. Scott, A. Chedin, “A Fast Line-by-Line Method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas,” J. Appl. Meteorol. 20, 802 (1981).
[Crossref]

Cousin, C.

Curnutte, B.

C. J. Tsao, B. Curnutte, “Line-Widths of Pressure-Broadened Spectral Lines,” J. Quant. Spectrosc. Radiat. Transfer 2, 41 (1962).
[Crossref]

Danilochkina, L. E.

K. P. Vasilevskii, L. E. Danilochkina, V. A. Kazbanov, “Intensities and Halfwidths of CO2 lines in the Vibrational–Rotational Bands at 2 μm,” Opt. Spectrosc. 38, 499 (1975).

Davies, R. W.

R. R. Gamache, R. W. Davies, “Theoretical N2-, O2-, and Air Broadened Halfwidths of 16O3 Calculated by Quantum Fourier Transform Theory with Realistic Collision Dynamics,” J. Mol. Spectrosc. 109, 283 (1985).
[Crossref]

Dijkerman, H. A.

W. A. Wensing, C. Noorman, H. A. Dijkerman, “Self-Shifting of Some Rotational Transitions of OCS and CH3CCH (Propyne). A Survey of Measurements on Shifting of Rotational Absorption Lines of Molecules,” J. Phys. B 14, 2813 (1981).
[Crossref]

W. A. Wensing, C. Noorman, H. A. Dijkerman, “Self-Broadening and Self-Shifting of Some Rotational Transitions of CF3H and N2O,” J. Phys. B 12, 1687 (1979).
[Crossref]

Drayson, S. R.

S. R. Drayson et al., “Spectroscopy and Transmittance for the LIMS Experiment,” J. Geophys. Res. 89, 5141 (1984).
[Crossref]

S. R. Drayson, C. Young, “Band Strength and Line Half-width of the 10.4 μ CO2 Band,” J. Quant. Spectrosc. Radiat. Transfer 7, 993 (1967).
[Crossref]

Eng, R. S.

R. S. Eng, A. W. Mantz, “Tunable Diode Laser Spectroscopy of CO2 in the 10- to 15 μm Spectral Region,” J. Mol. Spectrosc. 74, 331 (1979).
[Crossref]

Fridovich, B.

V. Malathy Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Diode Laser Measurements of Strengths, Half-Widths, and Temperature Dependence of Half-Widths for CO2 Spectral Lines Near 4.5 μm,” J. Mol. Spectrosc. 105, 61 (1984).
[Crossref]

Fujioka, T.

H. Oodate, T. Fujioka, “Measurements of 4.2 μm CO2 Pressure Broadening by Using an HBr Chemical Laser,” J. Chem. Phys. 68, 5494 (1978).
[Crossref]

Gamache, R. R.

R. R. Gamache, R. W. Davies, “Theoretical N2-, O2-, and Air Broadened Halfwidths of 16O3 Calculated by Quantum Fourier Transform Theory with Realistic Collision Dynamics,” J. Mol. Spectrosc. 109, 283 (1985).
[Crossref]

Gentry, B. M.

Gille, J. C.

J. C. Gille et al., “Validation of Temperature Retrievals Obtained by the Limb Infrared Monitor of the Stratosphere (LIMS) Experiment on Nimbus 7,” J. Geophys. Res. 89, 5147 (1984).
[Crossref]

Guelachvili, G.

Harries, J. E.

Haus, H. A.

T. W. Meyer, C. K. Rhodes, H. A. Haus, “High-Resolution Line Broadening and Collisional Studies in CO2 Using Nonlinear Spectroscopic Techniques,” Phys. Rev. A 12, 1993 (1975).
[Crossref]

Hay, P. J.

M. A. Morrison, P. J. Hay, “Molecular Properties of N2 and CO2 as Functions of Nuclear Geometry: Polarizabilities, Quadrupole Moments, and Dipole Moments,” J. Chem. Phys. 70, 4034 (1979).
[Crossref]

Henry, A.

Houdeau, J. P.

Husson, N.

N. Husson et al., “The GEISA Spectroscopic Line Parameters Data Bank in 1984,” Ann. Geophys. 4, 185 (1986).

Itabe, T.

Jones, G. D.

V. Malathy Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Diode Laser Measurements of Strengths, Half-Widths, and Temperature Dependence of Half-Widths for CO2 Spectral Lines Near 4.5 μm,” J. Mol. Spectrosc. 105, 61 (1984).
[Crossref]

Kazbanov, V. A.

K. P. Vasilevskii, L. E. Danilochkina, V. A. Kazbanov, “Intensities and Halfwidths of CO2 lines in the Vibrational–Rotational Bands at 2 μm,” Opt. Spectrosc. 38, 499 (1975).

Khodos, E. B.

M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the Parameters of the Vibrational–Rotational Lines in the 9.4 and 10.4 μm Bands of CO2 at Different Temperatures,” Opt. Spectrosc. 48, 403 (1980).

Knoll, J. S.

W. G. Planet, G. L. Tettemer, J. S. Knoll, “Temperature Dependence of Intensities and Widths of N2-Broadened Lines in the 15 μm CO2 Band from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 20, 547 (1978).
[Crossref]

Korb, C. L.

Lacome, N.

N. Lacome, A. Levy, G. Guelachvili, “Fourier Transform Measurement of Self-, N2, and O2-broadening of N2O lines: Temperature Dependence of Linewidths,” Appl. Opt. 23, 425 (1984).
[Crossref] [PubMed]

N. Lacome, A. Levy, C. Boulet, “Air-Broadened Linewidths of Nitrous Oxide: An Improved Calculation,” J. Mol. Spectrosc. 97, 139 (1983).
[Crossref]

N. Lacome, A. Levy, “A Parametric Deconvolution Method: Application to Two Bands of N2O in the 1.9 μm Region,” J. Mol. Spectrosc. 71, 175 (1978); “Line Strengths and Self-Broadened Linewidths of N2O in the 2 μm Region,” 85, 205 (1981) and references quoted therein.
[Crossref]

C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par Source Laser II. Etude Expérimentale de l’Elargissement des Raies de la Transition 00°1-(10°0, 02°0)i de CO2 Perturbé par N2,” Can. J. Phys. 50, 2178 (1972).
[Crossref]

E. Arié, N. Lacome, C. Rossetti, “Spectroscopie par Source Laser. 1. Etude Expérimentale des Intensités et Largeurs des Raies de la Transition 00°1-(10°,02°0)i de CO2,” Can. J. Phys. 50, 1800 (1972).
[Crossref]

LeDoucen, R.

Levy, A.

N. Lacome, A. Levy, G. Guelachvili, “Fourier Transform Measurement of Self-, N2, and O2-broadening of N2O lines: Temperature Dependence of Linewidths,” Appl. Opt. 23, 425 (1984).
[Crossref] [PubMed]

N. Lacome, A. Levy, C. Boulet, “Air-Broadened Linewidths of Nitrous Oxide: An Improved Calculation,” J. Mol. Spectrosc. 97, 139 (1983).
[Crossref]

N. Lacome, A. Levy, “A Parametric Deconvolution Method: Application to Two Bands of N2O in the 1.9 μm Region,” J. Mol. Spectrosc. 71, 175 (1978); “Line Strengths and Self-Broadened Linewidths of N2O in the 2 μm Region,” 85, 205 (1981) and references quoted therein.
[Crossref]

Luijendink, S. C. M.

S. C. M. Luijendink, “On the Shape of Pressure-Broadened Absorpion Lines in the Microwave Region II. Collision-Induced Width and Shift of Some Rotational Absorption Lines as a Function of Temperature,” J. Phys. B. 10, 1741 (1977).
[Crossref]

Maillard, J. P.

P. Arcas, E. Arié, C. Boulet, J. P. Maillard, “Self-Shifting of CO2 Lines in the 3ν3 Band at 1.43 μm,” J. Chem. Phys. 73, 5383 (1980).
[Crossref]

Malathy Devi, V.

V. Malathy Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Diode Laser Measurements of Strengths, Half-Widths, and Temperature Dependence of Half-Widths for CO2 Spectral Lines Near 4.5 μm,” J. Mol. Spectrosc. 105, 61 (1984).
[Crossref]

Mantz, A. W.

R. S. Eng, A. W. Mantz, “Tunable Diode Laser Spectroscopy of CO2 in the 10- to 15 μm Spectral Region,” J. Mol. Spectrosc. 74, 331 (1979).
[Crossref]

McClatchey, R. A.

R. A. McClatchey et al., “AFCRL Atmospheric Absorption Line Parameters Compilation,” Environmental Research Paper 434, AFCRL-TR-73-0096 (AFCRL, Bedford, MA, Jan.1973).

McCubbin, T. K.

T. K. McCubbin, T. R. Mooney, “A Study of the Strengths and Widths of Lines in the 9.4 and 10.4 μ CO2 Bands,” J. Quant. Spectrosc. Radiat. Transfer 8, 1255 (1968).
[Crossref]

McDonald, I. R.

C. S. Murthy, K. Singer, I. R. McDonald, “Interaction Site Models for Carbon Dioxide,” Mol. Phys. 44, 135 (1981).
[Crossref]

Meyer, T. W.

T. W. Meyer, C. K. Rhodes, H. A. Haus, “High-Resolution Line Broadening and Collisional Studies in CO2 Using Nonlinear Spectroscopic Techniques,” Phys. Rev. A 12, 1993 (1975).
[Crossref]

Mooney, T. R.

T. K. McCubbin, T. R. Mooney, “A Study of the Strengths and Widths of Lines in the 9.4 and 10.4 μ CO2 Bands,” J. Quant. Spectrosc. Radiat. Transfer 8, 1255 (1968).
[Crossref]

Morrison, M. A.

M. A. Morrison, P. J. Hay, “Molecular Properties of N2 and CO2 as Functions of Nuclear Geometry: Polarizabilities, Quadrupole Moments, and Dipole Moments,” J. Chem. Phys. 70, 4034 (1979).
[Crossref]

Murthy, C. S.

C. S. Murthy, K. Singer, I. R. McDonald, “Interaction Site Models for Carbon Dioxide,” Mol. Phys. 44, 135 (1981).
[Crossref]

Noorman, C.

W. A. Wensing, C. Noorman, H. A. Dijkerman, “Self-Shifting of Some Rotational Transitions of OCS and CH3CCH (Propyne). A Survey of Measurements on Shifting of Rotational Absorption Lines of Molecules,” J. Phys. B 14, 2813 (1981).
[Crossref]

W. A. Wensing, C. Noorman, H. A. Dijkerman, “Self-Broadening and Self-Shifting of Some Rotational Transitions of CF3H and N2O,” J. Phys. B 12, 1687 (1979).
[Crossref]

Oobatake, M.

M. Oobatake, T. Ooi, “Determination of Energy Parameters in Lennard-Jones Potential from Second Virial Coefficients,” Prog. Theor. Phys. 48, 2132 (1972).
[Crossref]

Oodate, H.

H. Oodate, T. Fujioka, “Measurements of 4.2 μm CO2 Pressure Broadening by Using an HBr Chemical Laser,” J. Chem. Phys. 68, 5494 (1978).
[Crossref]

Ooi, T.

M. Oobatake, T. Ooi, “Determination of Energy Parameters in Lennard-Jones Potential from Second Virial Coefficients,” Prog. Theor. Phys. 48, 2132 (1972).
[Crossref]

Pandey, L.

L. Pandey, C. P. K. Reddy, K. L. Sarkar, “Intermolecular Potentials from NMR Data: H2–N2O and H2–CO2,” Can. J. Phys. 61, 664 (1983).
[Crossref]

Planet, W. G.

G. L. Tettemer, W. G. Planet, “Intensities and Pressure-Broadened Widths of CO2 R-Branch Lines at 15 μm from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 24, 343 (1980).
[Crossref]

W. G. Planet, G. L. Tettemer “Temperature-Dependent Intensities and Widths of N2-Broadened CO2 Lines at 15 μm from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 22, 345 (1979).
[Crossref]

W. G. Planet, G. L. Tettemer, J. S. Knoll, “Temperature Dependence of Intensities and Widths of N2-Broadened Lines in the 15 μm CO2 Band from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 20, 547 (1978).
[Crossref]

W. G. Planet, J. R. Aronson, J. F. Butler, “Measurements of the Widths and Strengths of Low-J Lines of the ν2 Q Branch of CO2,” J. Mol. Spectrosc. 54, 331 (1975).
[Crossref]

Reddy, C. P. K.

L. Pandey, C. P. K. Reddy, K. L. Sarkar, “Intermolecular Potentials from NMR Data: H2–N2O and H2–CO2,” Can. J. Phys. 61, 664 (1983).
[Crossref]

Reichle, H. G.

H. G. Reichle, C. Young, “Foreign-Gas-Broadening Effects in the 15 μm CO2 Bands,” Can. J. Phys. 50, 2662 (1972).
[Crossref]

Rhodes, C. K.

T. W. Meyer, C. K. Rhodes, H. A. Haus, “High-Resolution Line Broadening and Collisional Studies in CO2 Using Nonlinear Spectroscopic Techniques,” Phys. Rev. A 12, 1993 (1975).
[Crossref]

Robert, D.

D. Robert, J. Bonamy, “Short Range Force Effects in Semi-classical Molecular Line Broadening Calculations,” J. Phys. 40, 923 (1979).
[Crossref]

Rossetti, C.

E. Arié, N. Lacome, C. Rossetti, “Spectroscopie par Source Laser. 1. Etude Expérimentale des Intensités et Largeurs des Raies de la Transition 00°1-(10°,02°0)i de CO2,” Can. J. Phys. 50, 1800 (1972).
[Crossref]

Rothman, L. S.

Sarkar, K. L.

L. Pandey, C. P. K. Reddy, K. L. Sarkar, “Intermolecular Potentials from NMR Data: H2–N2O and H2–CO2,” Can. J. Phys. 61, 664 (1983).
[Crossref]

Scott, N. A.

N. A. Scott, A. Chedin, “A Fast Line-by-Line Method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas,” J. Appl. Meteorol. 20, 802 (1981).
[Crossref]

Singer, K.

C. S. Murthy, K. Singer, I. R. McDonald, “Interaction Site Models for Carbon Dioxide,” Mol. Phys. 44, 135 (1981).
[Crossref]

Singleton, E. B.

Snyder, D. G. S.

V. Malathy Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Diode Laser Measurements of Strengths, Half-Widths, and Temperature Dependence of Half-Widths for CO2 Spectral Lines Near 4.5 μm,” J. Mol. Spectrosc. 105, 61 (1984).
[Crossref]

Srivastava, R. P.

R. P. Srivastava, H. R. Zaidi, “Self-Broadened Widths of Rotational Raman and Infrared Lines in CO2,” Can. J. Phys. 55, 549 (1977).
[Crossref]

Stogryn, A. P.

D. E. Stogryn, A. P. Stogryn, “Molecular Multipole Moments,” Mol. Phys. 11, 371 (1966).
[Crossref]

Stogryn, D. E.

D. E. Stogryn, A. P. Stogryn, “Molecular Multipole Moments,” Mol. Phys. 11, 371 (1966).
[Crossref]

Strow, L. L.

Suarez, C. B.

F. P. J. Valero, C. B. Suarez, R. W. Boese, “Intensities and Half-Widths at Different Temperatures for the 201iii ← 000 band of CO2 at 4854 cm−1,” J. Quant. Spectrosc. Radiat. Transfer 22, 93 (1979); “Absolute Intensities and Pressure Broadening Coefficients Measured at Different Temperatures for the 201ii ← 000 Band of 12C16O2 at 4978 cm−1”; 23, 337 (1980).
[Crossref] [PubMed]

F. P. J. Valero, C. B. Suarez, “Measurement at Different Temperatures of Absolute Intensities Line Half-Widths, and Broadening by Ar and N2 for the 30°1ii ← 00°0 Band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 19, 579 (1978).
[Crossref]

C. B. Suarez, F. P. J. Valero, “Intensities, Self-Broadening, and Broadening by Ar and N2 for the 301iii ← 000 Band of CO2 Measured at Different Temperatures,” J. Mol. Spectrosc. 71, 46 (1978).
[Crossref]

Tettemer, G. L.

G. L. Tettemer, W. G. Planet, “Intensities and Pressure-Broadened Widths of CO2 R-Branch Lines at 15 μm from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 24, 343 (1980).
[Crossref]

W. G. Planet, G. L. Tettemer “Temperature-Dependent Intensities and Widths of N2-Broadened CO2 Lines at 15 μm from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 22, 345 (1979).
[Crossref]

W. G. Planet, G. L. Tettemer, J. S. Knoll, “Temperature Dependence of Intensities and Widths of N2-Broadened Lines in the 15 μm CO2 Band from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 20, 547 (1978).
[Crossref]

Thiébeaux, C.

C. Thiébeaux, “Realisation d’une source monochromatique continue dans la région de 5 microns, par doublage des fréquences des raies d’un laser CO2, dans un cristal de tellure,” These 3ème cycle, Reims (1980).

Toth, R. A.

R. A. Toth, “Wavenumbers, Strengths, and Self-Broadened Widths in CO2 at 3 μm,” J. Mol. Spectrosc. 53, 1 (1974).
[Crossref]

Tsao, C. J.

C. J. Tsao, B. Curnutte, “Line-Widths of Pressure-Broadened Spectral Lines,” J. Quant. Spectrosc. Radiat. Transfer 2, 41 (1962).
[Crossref]

Tubbs, L. D.

Valero, F. P. J.

F. P. J. Valero, C. B. Suarez, R. W. Boese, “Intensities and Half-Widths at Different Temperatures for the 201iii ← 000 band of CO2 at 4854 cm−1,” J. Quant. Spectrosc. Radiat. Transfer 22, 93 (1979); “Absolute Intensities and Pressure Broadening Coefficients Measured at Different Temperatures for the 201ii ← 000 Band of 12C16O2 at 4978 cm−1”; 23, 337 (1980).
[Crossref] [PubMed]

F. P. J. Valero, C. B. Suarez, “Measurement at Different Temperatures of Absolute Intensities Line Half-Widths, and Broadening by Ar and N2 for the 30°1ii ← 00°0 Band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 19, 579 (1978).
[Crossref]

C. B. Suarez, F. P. J. Valero, “Intensities, Self-Broadening, and Broadening by Ar and N2 for the 301iii ← 000 Band of CO2 Measured at Different Temperatures,” J. Mol. Spectrosc. 71, 46 (1978).
[Crossref]

Vasilevskii, K. P.

K. P. Vasilevskii, L. E. Danilochkina, V. A. Kazbanov, “Intensities and Halfwidths of CO2 lines in the Vibrational–Rotational Bands at 2 μm,” Opt. Spectrosc. 38, 499 (1975).

B. A. Boldyrev, K. P. Vasilevskii, “Intensity and Half-Width of CO2 Lines in the 14°1–00°0 Band,” Opt. Spectrosc. 35, 476 (1973).

Weng, C. Y.

Wensing, W. A.

W. A. Wensing, C. Noorman, H. A. Dijkerman, “Self-Shifting of Some Rotational Transitions of OCS and CH3CCH (Propyne). A Survey of Measurements on Shifting of Rotational Absorption Lines of Molecules,” J. Phys. B 14, 2813 (1981).
[Crossref]

W. A. Wensing, C. Noorman, H. A. Dijkerman, “Self-Broadening and Self-Shifting of Some Rotational Transitions of CF3H and N2O,” J. Phys. B 12, 1687 (1979).
[Crossref]

Williams, D.

Williams, J. H.

R. D. Amos, A. D. Buckingham, J. H. Williams, “Theoretical Studies of the Collision-Induced Raman Spectrum of Carbon Dioxide,” Mol. Phys. 39, 1519 (1980).
[Crossref]

Young, C.

C. Young, R. E. Chapman, “Line-Widths and Band Strengths for the 9.4 and 10.4 μm CO2 Bands,” J. Quant. Spectrosc. Radiat. Transfer 14, 679 (1974).
[Crossref]

C. Young, R. W. Bell, R. E. Chapman, “Variation of N2-Broadened Collisional Width with Rotational Quantum Number for the 10.4 μm CO2 Band,” Appl. Phys. Lett. 20, 278 (1972).
[Crossref]

H. G. Reichle, C. Young, “Foreign-Gas-Broadening Effects in the 15 μm CO2 Bands,” Can. J. Phys. 50, 2662 (1972).
[Crossref]

S. R. Drayson, C. Young, “Band Strength and Line Half-width of the 10.4 μ CO2 Band,” J. Quant. Spectrosc. Radiat. Transfer 7, 993 (1967).
[Crossref]

Zaidi, H. R.

R. P. Srivastava, H. R. Zaidi, “Self-Broadened Widths of Rotational Raman and Infrared Lines in CO2,” Can. J. Phys. 55, 549 (1977).
[Crossref]

Ann. Geophys. (1)

N. Husson et al., “The GEISA Spectroscopic Line Parameters Data Bank in 1984,” Ann. Geophys. 4, 185 (1986).

Appl. Opt. (6)

Appl. Phys. Lett. (1)

C. Young, R. W. Bell, R. E. Chapman, “Variation of N2-Broadened Collisional Width with Rotational Quantum Number for the 10.4 μm CO2 Band,” Appl. Phys. Lett. 20, 278 (1972).
[Crossref]

Can. J. Phys. (5)

E. Arié, N. Lacome, C. Rossetti, “Spectroscopie par Source Laser. 1. Etude Expérimentale des Intensités et Largeurs des Raies de la Transition 00°1-(10°,02°0)i de CO2,” Can. J. Phys. 50, 1800 (1972).
[Crossref]

C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par Source Laser II. Etude Expérimentale de l’Elargissement des Raies de la Transition 00°1-(10°0, 02°0)i de CO2 Perturbé par N2,” Can. J. Phys. 50, 2178 (1972).
[Crossref]

R. P. Srivastava, H. R. Zaidi, “Self-Broadened Widths of Rotational Raman and Infrared Lines in CO2,” Can. J. Phys. 55, 549 (1977).
[Crossref]

L. Pandey, C. P. K. Reddy, K. L. Sarkar, “Intermolecular Potentials from NMR Data: H2–N2O and H2–CO2,” Can. J. Phys. 61, 664 (1983).
[Crossref]

H. G. Reichle, C. Young, “Foreign-Gas-Broadening Effects in the 15 μm CO2 Bands,” Can. J. Phys. 50, 2662 (1972).
[Crossref]

J. Appl. Meteorol. (1)

N. A. Scott, A. Chedin, “A Fast Line-by-Line Method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas,” J. Appl. Meteorol. 20, 802 (1981).
[Crossref]

J. Chem. Phys. (3)

P. Arcas, E. Arié, C. Boulet, J. P. Maillard, “Self-Shifting of CO2 Lines in the 3ν3 Band at 1.43 μm,” J. Chem. Phys. 73, 5383 (1980).
[Crossref]

H. Oodate, T. Fujioka, “Measurements of 4.2 μm CO2 Pressure Broadening by Using an HBr Chemical Laser,” J. Chem. Phys. 68, 5494 (1978).
[Crossref]

M. A. Morrison, P. J. Hay, “Molecular Properties of N2 and CO2 as Functions of Nuclear Geometry: Polarizabilities, Quadrupole Moments, and Dipole Moments,” J. Chem. Phys. 70, 4034 (1979).
[Crossref]

J. Geophys. Res. (2)

S. R. Drayson et al., “Spectroscopy and Transmittance for the LIMS Experiment,” J. Geophys. Res. 89, 5141 (1984).
[Crossref]

J. C. Gille et al., “Validation of Temperature Retrievals Obtained by the Limb Infrared Monitor of the Stratosphere (LIMS) Experiment on Nimbus 7,” J. Geophys. Res. 89, 5147 (1984).
[Crossref]

J. Mol. Spectrosc. (8)

R. A. Toth, “Wavenumbers, Strengths, and Self-Broadened Widths in CO2 at 3 μm,” J. Mol. Spectrosc. 53, 1 (1974).
[Crossref]

R. S. Eng, A. W. Mantz, “Tunable Diode Laser Spectroscopy of CO2 in the 10- to 15 μm Spectral Region,” J. Mol. Spectrosc. 74, 331 (1979).
[Crossref]

V. Malathy Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Diode Laser Measurements of Strengths, Half-Widths, and Temperature Dependence of Half-Widths for CO2 Spectral Lines Near 4.5 μm,” J. Mol. Spectrosc. 105, 61 (1984).
[Crossref]

C. B. Suarez, F. P. J. Valero, “Intensities, Self-Broadening, and Broadening by Ar and N2 for the 301iii ← 000 Band of CO2 Measured at Different Temperatures,” J. Mol. Spectrosc. 71, 46 (1978).
[Crossref]

W. G. Planet, J. R. Aronson, J. F. Butler, “Measurements of the Widths and Strengths of Low-J Lines of the ν2 Q Branch of CO2,” J. Mol. Spectrosc. 54, 331 (1975).
[Crossref]

R. R. Gamache, R. W. Davies, “Theoretical N2-, O2-, and Air Broadened Halfwidths of 16O3 Calculated by Quantum Fourier Transform Theory with Realistic Collision Dynamics,” J. Mol. Spectrosc. 109, 283 (1985).
[Crossref]

N. Lacome, A. Levy, “A Parametric Deconvolution Method: Application to Two Bands of N2O in the 1.9 μm Region,” J. Mol. Spectrosc. 71, 175 (1978); “Line Strengths and Self-Broadened Linewidths of N2O in the 2 μm Region,” 85, 205 (1981) and references quoted therein.
[Crossref]

N. Lacome, A. Levy, C. Boulet, “Air-Broadened Linewidths of Nitrous Oxide: An Improved Calculation,” J. Mol. Spectrosc. 97, 139 (1983).
[Crossref]

J. Opt. Soc. Am. (2)

J. Phys. (1)

D. Robert, J. Bonamy, “Short Range Force Effects in Semi-classical Molecular Line Broadening Calculations,” J. Phys. 40, 923 (1979).
[Crossref]

J. Phys. B (2)

W. A. Wensing, C. Noorman, H. A. Dijkerman, “Self-Shifting of Some Rotational Transitions of OCS and CH3CCH (Propyne). A Survey of Measurements on Shifting of Rotational Absorption Lines of Molecules,” J. Phys. B 14, 2813 (1981).
[Crossref]

W. A. Wensing, C. Noorman, H. A. Dijkerman, “Self-Broadening and Self-Shifting of Some Rotational Transitions of CF3H and N2O,” J. Phys. B 12, 1687 (1979).
[Crossref]

J. Phys. B. (1)

S. C. M. Luijendink, “On the Shape of Pressure-Broadened Absorpion Lines in the Microwave Region II. Collision-Induced Width and Shift of Some Rotational Absorption Lines as a Function of Temperature,” J. Phys. B. 10, 1741 (1977).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (9)

W. G. Planet, G. L. Tettemer, J. S. Knoll, “Temperature Dependence of Intensities and Widths of N2-Broadened Lines in the 15 μm CO2 Band from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 20, 547 (1978).
[Crossref]

W. G. Planet, G. L. Tettemer “Temperature-Dependent Intensities and Widths of N2-Broadened CO2 Lines at 15 μm from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 22, 345 (1979).
[Crossref]

G. L. Tettemer, W. G. Planet, “Intensities and Pressure-Broadened Widths of CO2 R-Branch Lines at 15 μm from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 24, 343 (1980).
[Crossref]

F. P. J. Valero, C. B. Suarez, “Measurement at Different Temperatures of Absolute Intensities Line Half-Widths, and Broadening by Ar and N2 for the 30°1ii ← 00°0 Band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 19, 579 (1978).
[Crossref]

F. P. J. Valero, C. B. Suarez, R. W. Boese, “Intensities and Half-Widths at Different Temperatures for the 201iii ← 000 band of CO2 at 4854 cm−1,” J. Quant. Spectrosc. Radiat. Transfer 22, 93 (1979); “Absolute Intensities and Pressure Broadening Coefficients Measured at Different Temperatures for the 201ii ← 000 Band of 12C16O2 at 4978 cm−1”; 23, 337 (1980).
[Crossref] [PubMed]

C. Young, R. E. Chapman, “Line-Widths and Band Strengths for the 9.4 and 10.4 μm CO2 Bands,” J. Quant. Spectrosc. Radiat. Transfer 14, 679 (1974).
[Crossref]

S. R. Drayson, C. Young, “Band Strength and Line Half-width of the 10.4 μ CO2 Band,” J. Quant. Spectrosc. Radiat. Transfer 7, 993 (1967).
[Crossref]

T. K. McCubbin, T. R. Mooney, “A Study of the Strengths and Widths of Lines in the 9.4 and 10.4 μ CO2 Bands,” J. Quant. Spectrosc. Radiat. Transfer 8, 1255 (1968).
[Crossref]

C. J. Tsao, B. Curnutte, “Line-Widths of Pressure-Broadened Spectral Lines,” J. Quant. Spectrosc. Radiat. Transfer 2, 41 (1962).
[Crossref]

Mol. Phys. (3)

R. D. Amos, A. D. Buckingham, J. H. Williams, “Theoretical Studies of the Collision-Induced Raman Spectrum of Carbon Dioxide,” Mol. Phys. 39, 1519 (1980).
[Crossref]

C. S. Murthy, K. Singer, I. R. McDonald, “Interaction Site Models for Carbon Dioxide,” Mol. Phys. 44, 135 (1981).
[Crossref]

D. E. Stogryn, A. P. Stogryn, “Molecular Multipole Moments,” Mol. Phys. 11, 371 (1966).
[Crossref]

Opt. Spectrosc. (3)

B. A. Boldyrev, K. P. Vasilevskii, “Intensity and Half-Width of CO2 Lines in the 14°1–00°0 Band,” Opt. Spectrosc. 35, 476 (1973).

K. P. Vasilevskii, L. E. Danilochkina, V. A. Kazbanov, “Intensities and Halfwidths of CO2 lines in the Vibrational–Rotational Bands at 2 μm,” Opt. Spectrosc. 38, 499 (1975).

M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the Parameters of the Vibrational–Rotational Lines in the 9.4 and 10.4 μm Bands of CO2 at Different Temperatures,” Opt. Spectrosc. 48, 403 (1980).

Phys. Rev. (1)

P. W. Anderson, “Pressure Broadening in the Microwave and Infrared Regions,” Phys. Rev. 76, 647 (1949).
[Crossref]

Phys. Rev. A (1)

T. W. Meyer, C. K. Rhodes, H. A. Haus, “High-Resolution Line Broadening and Collisional Studies in CO2 Using Nonlinear Spectroscopic Techniques,” Phys. Rev. A 12, 1993 (1975).
[Crossref]

Prog. Theor. Phys. (1)

M. Oobatake, T. Ooi, “Determination of Energy Parameters in Lennard-Jones Potential from Second Virial Coefficients,” Prog. Theor. Phys. 48, 2132 (1972).
[Crossref]

Other (3)

C. Thiébeaux, “Realisation d’une source monochromatique continue dans la région de 5 microns, par doublage des fréquences des raies d’un laser CO2, dans un cristal de tellure,” These 3ème cycle, Reims (1980).

E. Arié, “Intensités et largeurs de raies de rotation-vibration de la transition, ν3–ν1 du gaz carbonique pur et perturbé par l‘argon et e’ azote,” U. Paris VI (1971).

R. A. McClatchey et al., “AFCRL Atmospheric Absorption Line Parameters Compilation,” Environmental Research Paper 434, AFCRL-TR-73-0096 (AFCRL, Bedford, MA, Jan.1973).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Relative broadening coefficient of O2 as a function of |m|; α(m) = γ0(m)CO2–O2/γ0(m)CO2: □, Bulanin et al.23; this work, experimental data +; weighted average - - -.

Fig. 2
Fig. 2

Self-broadening coefficients of CO2 as a function of |m| at 296 K: +, Refs. 724; □, Tubbs and Williams,9 △, Arié et al.,10 —, least-squares fitting of all experimental data (encircled data have been discarded in the least-squares fitting).

Fig. 3
Fig. 3

N2-broadening coefficients of CO2 as a function of |m| at 296 K: +, Refs. 8, 11, 13, 18, 20, 2225, 31, 43;–, least-squares fitting of all experimental data.

Fig. 4
Fig. 4

O2-broadening coefficients of CO2 as a function of |m| at 296 K. Experimental: +, this work; ×, Cousin et al.43 Theoretical, QCO2 = −3.6 and QO2 = −0.39: • • • • •, mean atom–atom potential; – – – – – minimum atom–atom potential; —, extrapolated atom–atom potential.

Tables (3)

Tables Icon

Table I Experimental Relative Broadening Coefficients of O2α(m) = γ0(CO2 − O2)/γ0(CO2) and O2-Broadening Coefficients of CO2 at 296 K

Tables Icon

Table II Fitted Values of Self-, N2-, O2-, and Air-Broadening Coefficients of CO2 at 296 K

Tables Icon

Table III Molecular Parameters Used in the Theoretical Calculation of Self-, N2-, and O2-Broadening Coefficients

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

k 0 T ( CO 2 - O 2 ) = S 0 T P ( CO 2 ) π [ γ 0 ( CO 2 ) P ( CO 2 ) + γ 0 ( CO 2 - O 2 ) P ( O 2 ) ] ,
R = k 0 T ( CO 2 ) k 0 T ( CO 2 - O 2 ) = 1 + P ( O 2 ) P ( CO 2 ) γ 0 ( CO 2 - O 2 ) γ 0 ( CO 2 ) .
α = γ 0 ( CO 2 - O 2 ) γ 0 ( CO 2 )
γ 0 ( CO 2 - air ) = 0.79 γ 0 ( CO 2 - N 2 ) + 0.21 γ 0 ( CO 2 - O 2 ) ,
γ f i = N b 2 π c Re [ v 2 J 2 ρ v 2 J 2 0 v f ( v ) d v 0 2 π b d b S ( b ) ] ,
S ( b ) = 1 - ( 1 - S 2 m i d d l e N D ) × exp [ - ( S 2 outer f + S 2 outer i + S 2 m i d d l e D ) ] ,

Metrics