Abstract

A new active–passive airborne data correlation technique has been developed which allows the validation of existing in-water ocean color algorithms and the rapid search, identification, and evaluation of new sensor band locations and algorithm wavelength intervals. Thus far, applied only in conjunction with the spectral curvature algorithm (SCA), the active–passive correlation spectroscopy (APCS) technique shows that (a) the usual 490-nm (center-band) chlorophyll SCA could satisfactorily be placed anywhere within the nominal 460–510-nm interval, and (b) two other spectral regions, 645–660 and 680–695 nm, show considerable promise for chlorophyll pigment measurement. Additionally, the APCS method reveals potentially useful wavelength regions (at 600 and ~670 nm) of very low chlorophyll-in-water spectral curvature into which accessory pigment algorithms for phycoerythrin might be carefully positioned. In combination, the APCS and SCA methods strongly suggest that significant information content resides within the seemingly featureless ocean color spectrum.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Strumm, J. Morgan, Aquatic Chemistry (Wiley, New York, 1981).
  2. H. R. Gordon, A. Y. Morel, “Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, A Review,” in Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983).
  3. F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Organic Pigments,” in Chesapeake Bay Plume Study Superflux 1980, NASA Conf. Publ. 2188, 349 (1981).
  4. F. E. Hoge, R. N. Swift, “Airborne Simultaneous Spectroscopic Detection of Laser-Induced Water Raman Backscatter and Fluorescence from Chlorophyll a and Other Naturally Occurring Pigments,” Appl. Opt. 20, 3197 (1981).
    [CrossRef] [PubMed]
  5. F. E. Hoge, R. N. Swift, “Airborne Dual Laser Excitation and Mapping of Phytoplankton Photopigments in a Gulf Stream Warm Core Ring,” Appl. Opt. 22, 2272 (1983).
    [CrossRef] [PubMed]
  6. F. E. Hoge, R. N. Swift, “Airborne Mapping of Laser-Induced Fluorescence of Chlorophyll a and Phycoerythrin in a Gulf Stream Warm Core Ring,” paper 18, in Mapping Strategies in Chemical Oceanography, A. Zirino, Ed. (American Chemical Society, Washington, DC, 1985), pp. 353–372.
    [CrossRef]
  7. F. E. Hoge, R. E. Berry, R. N. Swift, “Active–Passive Airborne Ocean Color Measurement. 1: Instrumentation,” Appl. Opt. 25, 39 (1986).
    [CrossRef] [PubMed]
  8. F. E. Hoge, R. N. Swift, J. K. Yungel, “Active–Passive Airborne Ocean Color Measurements. 2: Applications,” Appl. Opt. 25, 48 (1986).
    [CrossRef] [PubMed]
  9. M. Bristow, D. Nielsen, D. Bundy, F. Furtek, “Use of Water Raman Emission to Correct Airborne Laser Fluorosensor Data for Effects of Water Optical Attenuation,” Appl. Opt. 20, 2889 (1981).
    [CrossRef] [PubMed]
  10. R. C. Smith, U. California, Santa Barbara; personal communication.
  11. D. A. Kiefer, “Chlorophyll a Fluorescence in Marine Centric Diatoms: Responses of Chloroplasts to Light and Nutrient Stress,” Mar. Biol. 23, 39 (1973).
    [CrossRef]
  12. R. H. Wiens, H. H. Zwick, “Trace Gas Detection by Correlation Spectroscopy,” in Infrared, Correlation and Fourier Transform Spectroscopy, J. S. Mattson, H. B. Mark, H. C. MacDonald, Eds. (Marcel Dekker, New York, 1977), Chap. 3, pp. 119–190.
  13. R. A. O’Neil, L. Buja-Bijunas, D. M. Rayner, “Field Performance of a Laser Fluorosensor for the Detection of Oil Spills,” Appl. Opt. 19, 863 (1980).
    [CrossRef]
  14. P. G. Hasell, L. M. Peterson, F. J. Thomson, E. A. Work, F. J. Kriegler, “Active and Passive Multispectral Scanner for Earth Resources Applications,” Final Report under NASA Control NAS9-14594 to Environmental Research Institute of Michigan, ERIM Report 115800-49-F (June1977).
  15. D. R. Lyzenga, “Remote Bathymetry Using Active–Passive Techniques,” in IEEE Digest of the International Geoscience and Remote Sensing Symposium, Vol. 2 (June1981), pp. 779–786.
  16. G. W. Grew, L. S. Mayo, “Ocean Color Algorithm for Remote Sensing of Chlorophyll,” NASA Tech. Paper 2164 (Langley Research Center, Hampton, VA, 1983).
  17. G. W. Grew, “Real-Time Test of MOCS Algorithm During Superflux 1980,” in Chesapeake Bay Plume Study Superflux 1980, NASA Conf. Publ. 2188 (1981).
  18. J. W. Campbell, W. E. Esaias, “Basis for Spectral Curvature Algorithms in Remote Sensing of Chlorophyll,” Appl. Opt. 22, 1084 (1983).
    [CrossRef] [PubMed]
  19. S. Lin, G. A. Borstad, J. F. R. Gower, “Remote Sensing of Chlorophyll in the Red Spectral Region,” in Remote Sensing of Shelf Sea Hydrodynamics, J. C. J. Nihoul, Ed. (Elsevier, Amsterdam, 1984), pp. 317–336.
    [CrossRef]
  20. R. A. Neville, J. F. R. Gower, “Passive Remote Sensing of Phytoplankton via Chlorophyll a Fluorescence,” J. Geophys. Res. 82, 3487 (1977).
    [CrossRef]
  21. J. F. R. Gower, “Observations of in situ Fluorescence of Chlorophyll in Saanich Inlet,” Boundary Layer Meteorol. 18, 235 (1980).
    [CrossRef]
  22. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton Pigment Concentration in the Middle Atlantic Bight: Comparison of Ship Determinations and CZCS Estimates,” Appl. Opt. 22, 20 (1983).
    [CrossRef] [PubMed]
  23. L. R. Poole, W. E. Esaias, “Water Raman Normalization of Airborne Laser Fluorosensor Measurements: A Computer Study,” Appl. Opt. 21, 3756 (1982).
    [CrossRef] [PubMed]
  24. A. F. Bunkin, D. V. Vlaso, D. M. Mirkamilov, V. P. Slobodyanin, “Aerial Laser Sounding of the Turbidity Profile and Mapping of the Distribution of Phytoplankton,” Dokl. Akad. Nauk SSSR 279, 335 (1984). [NASA Tech. Memo. 77851 (1985)].
  25. R. C. Smith, K. S. Baker, “Optical Classification of Natural Waters,” Limnol. Oceanogr. 23, 260 (1978).
    [CrossRef]
  26. J. J. Walsh, U. South Florida; private communication (manuscript in preparation).
  27. C. M. Moreth, C. S. Yentsch, “A Sensitive Method for the Determination of Open Ocean Phytoplankton Phycoerythrin Pigments by Fluorescence,” Limnol. Oceanogr. 15, 313 (1970).
    [CrossRef]
  28. D. E. Stewart, “A Method for the Extraction and Quantitation of Phycoerythrin from Algae,” NASA Contractor Report 165996 by Bionetics Corp. under contract NAS1-16978, Hampton, VA.
  29. M. P. F. Bristow, D. H. Bundy, C. M. Edmonds, P. E. Ponto, B. E. Frey, L. F. Small, “Airborne Laser Fluorosensor Survey of the Columbia and Snake Rivers: Simultaneous Measurements of Chlorophyll, Dissolved Organics and Optical Attenuation,” Int. J. Remote Sensing 6, 1707 (1985).
    [CrossRef]
  30. S. W. Jeffrey, “Algal Pigment Systems,” in Primary Productivity in the Sea, P. G. Falkowski, Ed. (Plenum, New York, 1980).
    [CrossRef]
  31. R. J. Exton, W. M. Houghton, W. Esaias, R. C. Harriss, F. H. Farmer, H. H. White, “Laboratory Analysis of Techniques for Remote Sensing of Estuarine Parameters Using Laser Excitation,” Appl. Opt. 22, 54 (1983).
    [CrossRef] [PubMed]

1986

1985

M. P. F. Bristow, D. H. Bundy, C. M. Edmonds, P. E. Ponto, B. E. Frey, L. F. Small, “Airborne Laser Fluorosensor Survey of the Columbia and Snake Rivers: Simultaneous Measurements of Chlorophyll, Dissolved Organics and Optical Attenuation,” Int. J. Remote Sensing 6, 1707 (1985).
[CrossRef]

1984

A. F. Bunkin, D. V. Vlaso, D. M. Mirkamilov, V. P. Slobodyanin, “Aerial Laser Sounding of the Turbidity Profile and Mapping of the Distribution of Phytoplankton,” Dokl. Akad. Nauk SSSR 279, 335 (1984). [NASA Tech. Memo. 77851 (1985)].

1983

1982

1981

M. Bristow, D. Nielsen, D. Bundy, F. Furtek, “Use of Water Raman Emission to Correct Airborne Laser Fluorosensor Data for Effects of Water Optical Attenuation,” Appl. Opt. 20, 2889 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne Simultaneous Spectroscopic Detection of Laser-Induced Water Raman Backscatter and Fluorescence from Chlorophyll a and Other Naturally Occurring Pigments,” Appl. Opt. 20, 3197 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Organic Pigments,” in Chesapeake Bay Plume Study Superflux 1980, NASA Conf. Publ. 2188, 349 (1981).

D. R. Lyzenga, “Remote Bathymetry Using Active–Passive Techniques,” in IEEE Digest of the International Geoscience and Remote Sensing Symposium, Vol. 2 (June1981), pp. 779–786.

G. W. Grew, “Real-Time Test of MOCS Algorithm During Superflux 1980,” in Chesapeake Bay Plume Study Superflux 1980, NASA Conf. Publ. 2188 (1981).

1980

R. A. O’Neil, L. Buja-Bijunas, D. M. Rayner, “Field Performance of a Laser Fluorosensor for the Detection of Oil Spills,” Appl. Opt. 19, 863 (1980).
[CrossRef]

J. F. R. Gower, “Observations of in situ Fluorescence of Chlorophyll in Saanich Inlet,” Boundary Layer Meteorol. 18, 235 (1980).
[CrossRef]

1978

R. C. Smith, K. S. Baker, “Optical Classification of Natural Waters,” Limnol. Oceanogr. 23, 260 (1978).
[CrossRef]

1977

R. A. Neville, J. F. R. Gower, “Passive Remote Sensing of Phytoplankton via Chlorophyll a Fluorescence,” J. Geophys. Res. 82, 3487 (1977).
[CrossRef]

1973

D. A. Kiefer, “Chlorophyll a Fluorescence in Marine Centric Diatoms: Responses of Chloroplasts to Light and Nutrient Stress,” Mar. Biol. 23, 39 (1973).
[CrossRef]

1970

C. M. Moreth, C. S. Yentsch, “A Sensitive Method for the Determination of Open Ocean Phytoplankton Phycoerythrin Pigments by Fluorescence,” Limnol. Oceanogr. 15, 313 (1970).
[CrossRef]

Baker, K. S.

R. C. Smith, K. S. Baker, “Optical Classification of Natural Waters,” Limnol. Oceanogr. 23, 260 (1978).
[CrossRef]

Berry, R. E.

Borstad, G. A.

S. Lin, G. A. Borstad, J. F. R. Gower, “Remote Sensing of Chlorophyll in the Red Spectral Region,” in Remote Sensing of Shelf Sea Hydrodynamics, J. C. J. Nihoul, Ed. (Elsevier, Amsterdam, 1984), pp. 317–336.
[CrossRef]

Bristow, M.

Bristow, M. P. F.

M. P. F. Bristow, D. H. Bundy, C. M. Edmonds, P. E. Ponto, B. E. Frey, L. F. Small, “Airborne Laser Fluorosensor Survey of the Columbia and Snake Rivers: Simultaneous Measurements of Chlorophyll, Dissolved Organics and Optical Attenuation,” Int. J. Remote Sensing 6, 1707 (1985).
[CrossRef]

Broenkow, W. W.

Brown, J. W.

Brown, O. B.

Buja-Bijunas, L.

Bundy, D.

Bundy, D. H.

M. P. F. Bristow, D. H. Bundy, C. M. Edmonds, P. E. Ponto, B. E. Frey, L. F. Small, “Airborne Laser Fluorosensor Survey of the Columbia and Snake Rivers: Simultaneous Measurements of Chlorophyll, Dissolved Organics and Optical Attenuation,” Int. J. Remote Sensing 6, 1707 (1985).
[CrossRef]

Bunkin, A. F.

A. F. Bunkin, D. V. Vlaso, D. M. Mirkamilov, V. P. Slobodyanin, “Aerial Laser Sounding of the Turbidity Profile and Mapping of the Distribution of Phytoplankton,” Dokl. Akad. Nauk SSSR 279, 335 (1984). [NASA Tech. Memo. 77851 (1985)].

California, U.

R. C. Smith, U. California, Santa Barbara; personal communication.

Campbell, J. W.

Clark, D. K.

Edmonds, C. M.

M. P. F. Bristow, D. H. Bundy, C. M. Edmonds, P. E. Ponto, B. E. Frey, L. F. Small, “Airborne Laser Fluorosensor Survey of the Columbia and Snake Rivers: Simultaneous Measurements of Chlorophyll, Dissolved Organics and Optical Attenuation,” Int. J. Remote Sensing 6, 1707 (1985).
[CrossRef]

Esaias, W.

Esaias, W. E.

Evans, R. H.

Exton, R. J.

Farmer, F. H.

Frey, B. E.

M. P. F. Bristow, D. H. Bundy, C. M. Edmonds, P. E. Ponto, B. E. Frey, L. F. Small, “Airborne Laser Fluorosensor Survey of the Columbia and Snake Rivers: Simultaneous Measurements of Chlorophyll, Dissolved Organics and Optical Attenuation,” Int. J. Remote Sensing 6, 1707 (1985).
[CrossRef]

Furtek, F.

Gordon, H. R.

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton Pigment Concentration in the Middle Atlantic Bight: Comparison of Ship Determinations and CZCS Estimates,” Appl. Opt. 22, 20 (1983).
[CrossRef] [PubMed]

H. R. Gordon, A. Y. Morel, “Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, A Review,” in Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983).

Gower, J. F. R.

J. F. R. Gower, “Observations of in situ Fluorescence of Chlorophyll in Saanich Inlet,” Boundary Layer Meteorol. 18, 235 (1980).
[CrossRef]

R. A. Neville, J. F. R. Gower, “Passive Remote Sensing of Phytoplankton via Chlorophyll a Fluorescence,” J. Geophys. Res. 82, 3487 (1977).
[CrossRef]

S. Lin, G. A. Borstad, J. F. R. Gower, “Remote Sensing of Chlorophyll in the Red Spectral Region,” in Remote Sensing of Shelf Sea Hydrodynamics, J. C. J. Nihoul, Ed. (Elsevier, Amsterdam, 1984), pp. 317–336.
[CrossRef]

Grew, G. W.

G. W. Grew, “Real-Time Test of MOCS Algorithm During Superflux 1980,” in Chesapeake Bay Plume Study Superflux 1980, NASA Conf. Publ. 2188 (1981).

G. W. Grew, L. S. Mayo, “Ocean Color Algorithm for Remote Sensing of Chlorophyll,” NASA Tech. Paper 2164 (Langley Research Center, Hampton, VA, 1983).

Harriss, R. C.

Hasell, P. G.

P. G. Hasell, L. M. Peterson, F. J. Thomson, E. A. Work, F. J. Kriegler, “Active and Passive Multispectral Scanner for Earth Resources Applications,” Final Report under NASA Control NAS9-14594 to Environmental Research Institute of Michigan, ERIM Report 115800-49-F (June1977).

Hoge, F. E.

F. E. Hoge, R. N. Swift, J. K. Yungel, “Active–Passive Airborne Ocean Color Measurements. 2: Applications,” Appl. Opt. 25, 48 (1986).
[CrossRef] [PubMed]

F. E. Hoge, R. E. Berry, R. N. Swift, “Active–Passive Airborne Ocean Color Measurement. 1: Instrumentation,” Appl. Opt. 25, 39 (1986).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne Dual Laser Excitation and Mapping of Phytoplankton Photopigments in a Gulf Stream Warm Core Ring,” Appl. Opt. 22, 2272 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne Simultaneous Spectroscopic Detection of Laser-Induced Water Raman Backscatter and Fluorescence from Chlorophyll a and Other Naturally Occurring Pigments,” Appl. Opt. 20, 3197 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Organic Pigments,” in Chesapeake Bay Plume Study Superflux 1980, NASA Conf. Publ. 2188, 349 (1981).

F. E. Hoge, R. N. Swift, “Airborne Mapping of Laser-Induced Fluorescence of Chlorophyll a and Phycoerythrin in a Gulf Stream Warm Core Ring,” paper 18, in Mapping Strategies in Chemical Oceanography, A. Zirino, Ed. (American Chemical Society, Washington, DC, 1985), pp. 353–372.
[CrossRef]

Houghton, W. M.

Jeffrey, S. W.

S. W. Jeffrey, “Algal Pigment Systems,” in Primary Productivity in the Sea, P. G. Falkowski, Ed. (Plenum, New York, 1980).
[CrossRef]

Kiefer, D. A.

D. A. Kiefer, “Chlorophyll a Fluorescence in Marine Centric Diatoms: Responses of Chloroplasts to Light and Nutrient Stress,” Mar. Biol. 23, 39 (1973).
[CrossRef]

Kriegler, F. J.

P. G. Hasell, L. M. Peterson, F. J. Thomson, E. A. Work, F. J. Kriegler, “Active and Passive Multispectral Scanner for Earth Resources Applications,” Final Report under NASA Control NAS9-14594 to Environmental Research Institute of Michigan, ERIM Report 115800-49-F (June1977).

Lin, S.

S. Lin, G. A. Borstad, J. F. R. Gower, “Remote Sensing of Chlorophyll in the Red Spectral Region,” in Remote Sensing of Shelf Sea Hydrodynamics, J. C. J. Nihoul, Ed. (Elsevier, Amsterdam, 1984), pp. 317–336.
[CrossRef]

Lyzenga, D. R.

D. R. Lyzenga, “Remote Bathymetry Using Active–Passive Techniques,” in IEEE Digest of the International Geoscience and Remote Sensing Symposium, Vol. 2 (June1981), pp. 779–786.

Mayo, L. S.

G. W. Grew, L. S. Mayo, “Ocean Color Algorithm for Remote Sensing of Chlorophyll,” NASA Tech. Paper 2164 (Langley Research Center, Hampton, VA, 1983).

Mirkamilov, D. M.

A. F. Bunkin, D. V. Vlaso, D. M. Mirkamilov, V. P. Slobodyanin, “Aerial Laser Sounding of the Turbidity Profile and Mapping of the Distribution of Phytoplankton,” Dokl. Akad. Nauk SSSR 279, 335 (1984). [NASA Tech. Memo. 77851 (1985)].

Morel, A. Y.

H. R. Gordon, A. Y. Morel, “Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, A Review,” in Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983).

Moreth, C. M.

C. M. Moreth, C. S. Yentsch, “A Sensitive Method for the Determination of Open Ocean Phytoplankton Phycoerythrin Pigments by Fluorescence,” Limnol. Oceanogr. 15, 313 (1970).
[CrossRef]

Morgan, J.

W. Strumm, J. Morgan, Aquatic Chemistry (Wiley, New York, 1981).

Neville, R. A.

R. A. Neville, J. F. R. Gower, “Passive Remote Sensing of Phytoplankton via Chlorophyll a Fluorescence,” J. Geophys. Res. 82, 3487 (1977).
[CrossRef]

Nielsen, D.

O’Neil, R. A.

Peterson, L. M.

P. G. Hasell, L. M. Peterson, F. J. Thomson, E. A. Work, F. J. Kriegler, “Active and Passive Multispectral Scanner for Earth Resources Applications,” Final Report under NASA Control NAS9-14594 to Environmental Research Institute of Michigan, ERIM Report 115800-49-F (June1977).

Ponto, P. E.

M. P. F. Bristow, D. H. Bundy, C. M. Edmonds, P. E. Ponto, B. E. Frey, L. F. Small, “Airborne Laser Fluorosensor Survey of the Columbia and Snake Rivers: Simultaneous Measurements of Chlorophyll, Dissolved Organics and Optical Attenuation,” Int. J. Remote Sensing 6, 1707 (1985).
[CrossRef]

Poole, L. R.

Rayner, D. M.

Slobodyanin, V. P.

A. F. Bunkin, D. V. Vlaso, D. M. Mirkamilov, V. P. Slobodyanin, “Aerial Laser Sounding of the Turbidity Profile and Mapping of the Distribution of Phytoplankton,” Dokl. Akad. Nauk SSSR 279, 335 (1984). [NASA Tech. Memo. 77851 (1985)].

Small, L. F.

M. P. F. Bristow, D. H. Bundy, C. M. Edmonds, P. E. Ponto, B. E. Frey, L. F. Small, “Airborne Laser Fluorosensor Survey of the Columbia and Snake Rivers: Simultaneous Measurements of Chlorophyll, Dissolved Organics and Optical Attenuation,” Int. J. Remote Sensing 6, 1707 (1985).
[CrossRef]

Smith, R. C.

R. C. Smith, K. S. Baker, “Optical Classification of Natural Waters,” Limnol. Oceanogr. 23, 260 (1978).
[CrossRef]

R. C. Smith, U. California, Santa Barbara; personal communication.

Stewart, D. E.

D. E. Stewart, “A Method for the Extraction and Quantitation of Phycoerythrin from Algae,” NASA Contractor Report 165996 by Bionetics Corp. under contract NAS1-16978, Hampton, VA.

Strumm, W.

W. Strumm, J. Morgan, Aquatic Chemistry (Wiley, New York, 1981).

Swift, R. N.

F. E. Hoge, R. E. Berry, R. N. Swift, “Active–Passive Airborne Ocean Color Measurement. 1: Instrumentation,” Appl. Opt. 25, 39 (1986).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Active–Passive Airborne Ocean Color Measurements. 2: Applications,” Appl. Opt. 25, 48 (1986).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne Dual Laser Excitation and Mapping of Phytoplankton Photopigments in a Gulf Stream Warm Core Ring,” Appl. Opt. 22, 2272 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne Simultaneous Spectroscopic Detection of Laser-Induced Water Raman Backscatter and Fluorescence from Chlorophyll a and Other Naturally Occurring Pigments,” Appl. Opt. 20, 3197 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Organic Pigments,” in Chesapeake Bay Plume Study Superflux 1980, NASA Conf. Publ. 2188, 349 (1981).

F. E. Hoge, R. N. Swift, “Airborne Mapping of Laser-Induced Fluorescence of Chlorophyll a and Phycoerythrin in a Gulf Stream Warm Core Ring,” paper 18, in Mapping Strategies in Chemical Oceanography, A. Zirino, Ed. (American Chemical Society, Washington, DC, 1985), pp. 353–372.
[CrossRef]

Thomson, F. J.

P. G. Hasell, L. M. Peterson, F. J. Thomson, E. A. Work, F. J. Kriegler, “Active and Passive Multispectral Scanner for Earth Resources Applications,” Final Report under NASA Control NAS9-14594 to Environmental Research Institute of Michigan, ERIM Report 115800-49-F (June1977).

Vlaso, D. V.

A. F. Bunkin, D. V. Vlaso, D. M. Mirkamilov, V. P. Slobodyanin, “Aerial Laser Sounding of the Turbidity Profile and Mapping of the Distribution of Phytoplankton,” Dokl. Akad. Nauk SSSR 279, 335 (1984). [NASA Tech. Memo. 77851 (1985)].

Walsh, J. J.

J. J. Walsh, U. South Florida; private communication (manuscript in preparation).

White, H. H.

Wiens, R. H.

R. H. Wiens, H. H. Zwick, “Trace Gas Detection by Correlation Spectroscopy,” in Infrared, Correlation and Fourier Transform Spectroscopy, J. S. Mattson, H. B. Mark, H. C. MacDonald, Eds. (Marcel Dekker, New York, 1977), Chap. 3, pp. 119–190.

Work, E. A.

P. G. Hasell, L. M. Peterson, F. J. Thomson, E. A. Work, F. J. Kriegler, “Active and Passive Multispectral Scanner for Earth Resources Applications,” Final Report under NASA Control NAS9-14594 to Environmental Research Institute of Michigan, ERIM Report 115800-49-F (June1977).

Yentsch, C. S.

C. M. Moreth, C. S. Yentsch, “A Sensitive Method for the Determination of Open Ocean Phytoplankton Phycoerythrin Pigments by Fluorescence,” Limnol. Oceanogr. 15, 313 (1970).
[CrossRef]

Yungel, J. K.

Zwick, H. H.

R. H. Wiens, H. H. Zwick, “Trace Gas Detection by Correlation Spectroscopy,” in Infrared, Correlation and Fourier Transform Spectroscopy, J. S. Mattson, H. B. Mark, H. C. MacDonald, Eds. (Marcel Dekker, New York, 1977), Chap. 3, pp. 119–190.

Appl. Opt.

F. E. Hoge, R. N. Swift, “Airborne Simultaneous Spectroscopic Detection of Laser-Induced Water Raman Backscatter and Fluorescence from Chlorophyll a and Other Naturally Occurring Pigments,” Appl. Opt. 20, 3197 (1981).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne Dual Laser Excitation and Mapping of Phytoplankton Photopigments in a Gulf Stream Warm Core Ring,” Appl. Opt. 22, 2272 (1983).
[CrossRef] [PubMed]

F. E. Hoge, R. E. Berry, R. N. Swift, “Active–Passive Airborne Ocean Color Measurement. 1: Instrumentation,” Appl. Opt. 25, 39 (1986).
[CrossRef] [PubMed]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Active–Passive Airborne Ocean Color Measurements. 2: Applications,” Appl. Opt. 25, 48 (1986).
[CrossRef] [PubMed]

M. Bristow, D. Nielsen, D. Bundy, F. Furtek, “Use of Water Raman Emission to Correct Airborne Laser Fluorosensor Data for Effects of Water Optical Attenuation,” Appl. Opt. 20, 2889 (1981).
[CrossRef] [PubMed]

R. A. O’Neil, L. Buja-Bijunas, D. M. Rayner, “Field Performance of a Laser Fluorosensor for the Detection of Oil Spills,” Appl. Opt. 19, 863 (1980).
[CrossRef]

J. W. Campbell, W. E. Esaias, “Basis for Spectral Curvature Algorithms in Remote Sensing of Chlorophyll,” Appl. Opt. 22, 1084 (1983).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton Pigment Concentration in the Middle Atlantic Bight: Comparison of Ship Determinations and CZCS Estimates,” Appl. Opt. 22, 20 (1983).
[CrossRef] [PubMed]

L. R. Poole, W. E. Esaias, “Water Raman Normalization of Airborne Laser Fluorosensor Measurements: A Computer Study,” Appl. Opt. 21, 3756 (1982).
[CrossRef] [PubMed]

R. J. Exton, W. M. Houghton, W. Esaias, R. C. Harriss, F. H. Farmer, H. H. White, “Laboratory Analysis of Techniques for Remote Sensing of Estuarine Parameters Using Laser Excitation,” Appl. Opt. 22, 54 (1983).
[CrossRef] [PubMed]

Boundary Layer Meteorol.

J. F. R. Gower, “Observations of in situ Fluorescence of Chlorophyll in Saanich Inlet,” Boundary Layer Meteorol. 18, 235 (1980).
[CrossRef]

Chesapeake Bay Plume Study Superflux 1980

F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Organic Pigments,” in Chesapeake Bay Plume Study Superflux 1980, NASA Conf. Publ. 2188, 349 (1981).

G. W. Grew, “Real-Time Test of MOCS Algorithm During Superflux 1980,” in Chesapeake Bay Plume Study Superflux 1980, NASA Conf. Publ. 2188 (1981).

Dokl. Akad. Nauk SSSR

A. F. Bunkin, D. V. Vlaso, D. M. Mirkamilov, V. P. Slobodyanin, “Aerial Laser Sounding of the Turbidity Profile and Mapping of the Distribution of Phytoplankton,” Dokl. Akad. Nauk SSSR 279, 335 (1984). [NASA Tech. Memo. 77851 (1985)].

IEEE Digest of the International Geoscience and Remote Sensing Symposium

D. R. Lyzenga, “Remote Bathymetry Using Active–Passive Techniques,” in IEEE Digest of the International Geoscience and Remote Sensing Symposium, Vol. 2 (June1981), pp. 779–786.

Int. J. Remote Sensing

M. P. F. Bristow, D. H. Bundy, C. M. Edmonds, P. E. Ponto, B. E. Frey, L. F. Small, “Airborne Laser Fluorosensor Survey of the Columbia and Snake Rivers: Simultaneous Measurements of Chlorophyll, Dissolved Organics and Optical Attenuation,” Int. J. Remote Sensing 6, 1707 (1985).
[CrossRef]

J. Geophys. Res.

R. A. Neville, J. F. R. Gower, “Passive Remote Sensing of Phytoplankton via Chlorophyll a Fluorescence,” J. Geophys. Res. 82, 3487 (1977).
[CrossRef]

Limnol. Oceanogr.

R. C. Smith, K. S. Baker, “Optical Classification of Natural Waters,” Limnol. Oceanogr. 23, 260 (1978).
[CrossRef]

C. M. Moreth, C. S. Yentsch, “A Sensitive Method for the Determination of Open Ocean Phytoplankton Phycoerythrin Pigments by Fluorescence,” Limnol. Oceanogr. 15, 313 (1970).
[CrossRef]

Mar. Biol.

D. A. Kiefer, “Chlorophyll a Fluorescence in Marine Centric Diatoms: Responses of Chloroplasts to Light and Nutrient Stress,” Mar. Biol. 23, 39 (1973).
[CrossRef]

Other

R. H. Wiens, H. H. Zwick, “Trace Gas Detection by Correlation Spectroscopy,” in Infrared, Correlation and Fourier Transform Spectroscopy, J. S. Mattson, H. B. Mark, H. C. MacDonald, Eds. (Marcel Dekker, New York, 1977), Chap. 3, pp. 119–190.

P. G. Hasell, L. M. Peterson, F. J. Thomson, E. A. Work, F. J. Kriegler, “Active and Passive Multispectral Scanner for Earth Resources Applications,” Final Report under NASA Control NAS9-14594 to Environmental Research Institute of Michigan, ERIM Report 115800-49-F (June1977).

G. W. Grew, L. S. Mayo, “Ocean Color Algorithm for Remote Sensing of Chlorophyll,” NASA Tech. Paper 2164 (Langley Research Center, Hampton, VA, 1983).

R. C. Smith, U. California, Santa Barbara; personal communication.

F. E. Hoge, R. N. Swift, “Airborne Mapping of Laser-Induced Fluorescence of Chlorophyll a and Phycoerythrin in a Gulf Stream Warm Core Ring,” paper 18, in Mapping Strategies in Chemical Oceanography, A. Zirino, Ed. (American Chemical Society, Washington, DC, 1985), pp. 353–372.
[CrossRef]

W. Strumm, J. Morgan, Aquatic Chemistry (Wiley, New York, 1981).

H. R. Gordon, A. Y. Morel, “Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, A Review,” in Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983).

D. E. Stewart, “A Method for the Extraction and Quantitation of Phycoerythrin from Algae,” NASA Contractor Report 165996 by Bionetics Corp. under contract NAS1-16978, Hampton, VA.

S. W. Jeffrey, “Algal Pigment Systems,” in Primary Productivity in the Sea, P. G. Falkowski, Ed. (Plenum, New York, 1980).
[CrossRef]

J. J. Walsh, U. South Florida; private communication (manuscript in preparation).

S. Lin, G. A. Borstad, J. F. R. Gower, “Remote Sensing of Chlorophyll in the Red Spectral Region,” in Remote Sensing of Shelf Sea Hydrodynamics, J. C. J. Nihoul, Ed. (Elsevier, Amsterdam, 1984), pp. 317–336.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Idealized low-altitude oceanic spectral reflectance for low-and high-chlorophyll bearing waters. The principal differential chlorophyll features are presently known to be the slope and curvature in the blue/blue-green region and the fluorescence emission in the red.

Fig. 2
Fig. 2

Schematic illustrations of (a) typical 532-nm laser-induced fluorescence spectrum showing the laser backscatter L, phycoerythrin fluorescence P, water Raman backscatter R, and chlorophyll fluorescence C; (b) idealized solar-stimulated ocean color reflectance spectrum Si); (c) water-Raman-normalized laser-induced fluorescence spectrum F′(λi); (d) so-called spectral curvature obtained by applying second difference operator to logSi(λ); (e) representative chlorophyll spectral correlation function ρcj) obtained by correlating normalized chlorophyll fluorescence F′(λc) with Δ ω 2 log S ( λ j ) for all λj.

Fig. 3
Fig. 3

New York Bight location of the SEEP field test site where most of the airborne active–passive data were obtained. Line H had the highest pigment variability and was selected for this study.

Fig. 4
Fig. 4

Along track profiles of line H showing (a) laser-induced chlorophyll a and phycoerythrin fluorescence as normalized by the water Raman backscatter. The low correlation of chlorophyll and phycoerythrin is easily identified in the first 40-km section of the line. (b) Laser-induced water Raman backscatter (note the slight depression in the first 40-km segment of the line). (c) Sea surface temperature along line H. (d) Radiance received in the passive channel centered at 746 nm. The spectral bandwidth is 11.25 nm. (This figure is reproduced from Hoge et al.8)

Fig. 5
Fig. 5

(a) Chlorophyll spectral correlation function ρcj). This function yields spectral regions at 460–510, 645–660, and 680–695 nm where the upwelled spectral radiance variability of the ocean is directly related to chlorophyll pigments. (b) Phycoerythrin spectral correlation ρpj). This function gives narrow spectral regions at 600 and ~670 where the upwelled spectral radiance variability is strongly related to phycoerythrin pigment fluorescence. By comparing (a) and (b) it is evident that chlorophyll and phycoerythrin ocean color spectral variability contributions are inversely related at their principal correlation wavelengths and that the ocean color spectrum is essentially invariant to these pigments at 630 nm.

Fig. 6
Fig. 6

Passively derived (a) chlorophyll at 690 nm and (b) phycoerythrin at 600 nm using a curvature algorithm of the form given in Eq. (4). The water Raman normalized laser-induced chlorophyll and phycoerythrin fluorescence are, respectively, plotted in each section for comparison purposes. The data were obtained along line H (Fig. 3) using the active and passive capabilities of the airborne oceanographic lidar.

Fig. 7
Fig. 7

Passively derived (a) chlorophyll and (b) phycoerythrin using an algorithm of the form in Eq. (4). The data were obtained with the MOCS and the AOL–POCS. The chlorophyll profile was generated using a curvature algorithm centered at 490 nm for both sensors. The phycoerythrin profile was obtained from curvature algorithms centered at 595 nm (MOCS) and 600 nm (AOL–POCS).

Fig. 8
Fig. 8

Passively derived (a) chlorophyll at 490 nm and (b) phycoerythrin at 600 nm using an algorithm of the form in Eq. (4). The data were obtained with the MOCS during a warm core ring mission in 1982. The AOL water–Raman normalized laser-induced chlorophyll and phycoerythrin fluorescence are, respectively, plotted (shaded) in each section for comparison purposes.

Tables (1)

Tables Icon

Table I Comparison of Active–Passive and Conventional Correlation Spectroascopy

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ ω f ( λ ) = f ( λ + ω 2 ) - f ( λ - ω 2 ) .
Δ ω 2 log S ( λ i ) = - log G ω ( λ i ) ,
G ω ( λ i ) = S 2 2 ( λ i ) S ( λ i + 30 ) · S ( λ i - 30 ) .
C = A - B log G ω ( λ j )
log C = a - b log G ω ( λ m )
log e C = α - β G ω ( λ m ) ,

Metrics