Abstract

Extensive IR spatial images and spectral signatures were gathered from an active large brush and forest fire by the Flying Infrared Signatures Technology Aircraft of the U.S. Air Force Geophysics Laboratory. Infrared images give the apparent temperatures of actively burning and burned over regions and aid in identifying the type and intensity of the fire. Spectral signatures of hot regions from interferometer and spatial data can also be used to determine apparent fire temperatures. Gaseous combustion products in the fire plume are quantitatively identified by the IR absorption spectra at 1-cm−1 resolution using the hot fire emission as the radiation source. Concentrations of CO were measured at 50 times higher than ambient levels. The applicability of these techniques to gathering data relevant to important environmental and military problems, including atmospheric pollution from fires and possible short-term climatic effects due to fires ignited in a nuclear exchange, is discussed.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Crutzen, J. W. Birks, “The Atmosphere After a Nuclear War: Twilight at Noon,” Ambio 11, 115 (1982).
  2. R. P. Turco, O. B. Toon, T. P. Ackerman, J. B. Pollack, C. Sagan, “Nuclear Winter: Global Consequences of Multiple Nuclear Explosions,” Science 222, 1283 (1983).
    [CrossRef] [PubMed]
  3. C. Covey, S. H. Schneider, S. C. Thompson, “Global Atmospheric Effects of Massive Smoke Injections from a Nuclear War: Results from General Circulation Model Simulations,” Nature 308, 21 (1984).
    [CrossRef]
  4. Committee on the Atmospheric Effects of Nuclear Explosions, National Research Council, The Effects On the Atmosphere of a Major Nuclear Exchange (National Academy Press, Washington, DC, 1985).
  5. Proceedings, Conference on Large Scale Fire Phenomenology (National Bureau of Standards, Gaithersburg, MD, Sept.1984).
  6. A. S. Zachor, J. A. Holzer, F. G. Smith, “IR Signature Study,” Report AFGL-TR-79-1012, Honeywell Electro-Optics Center, Lexington, MA (Feb.1979).
  7. “Impact of Forestry Burning Upon Air Quality,” EPA 910/9-78-052, Environmental Protection Agency, Region X, Seattle (Oct.1978).
  8. Y.-S. Chung, “On The Forest Fires and the Analysis of Air Quality Data and Total Atmospheric Ozone,” Atmos. Environ. 18, 2153 (1984).
    [CrossRef]
  9. Y.-S. Chung, H. V. Le, “Detection of Forest Fire Smoke Plumes by Satellite Imagery,” Atmos. Environ. 18, 2143 (1984).
    [CrossRef]
  10. W. C. Wang, A. A. Yung, T. Lacis, J. E. Hanson, “Greenhouse Effects Due to Man-Made Perturbations of Trace Gases,” Science 194, 685 (1976).
    [CrossRef] [PubMed]
  11. P. J. Crutzen, L. D. Heidt, J. P. Krasnec, W. H. Pollock, W. Seiler, “Biomass Burning As a Source of Atmospheric Gases CO, H2, H2O, NO, CH4 and COS,” Nature 282, 253 (1979).
    [CrossRef]
  12. B. P. Sandford, J. H. Schummers, J. D. Rex, J. Shumsky, R. J. Huppi, R. B. Sluder, “Aircraft Signatures in the Infrared 1.2 to 5.5 Micron Region Vol 1; Instrumentation,” Report AFGL-TR-76-0133(1), (ADBO14088L)Air Force Geophysics Laboratory, Hanscom AFB, MA (June1976).
  13. J. Shumsky, J. H. Schummers, “AFGL-FLIR NKC-135 Aircraft Instruments,” Report AFGL-TR-82-0031, (ADB067085L)Air Force Geophysics Laboratory, Hanscom AFB, MA (Jan.1982).
  14. W. Seiler, P. J. Crutzen, “Estimates of Gross and Net Fluxes of Carbon Between the Biosphere and the Atmosphere From Biomass Burning,” Climatic Change 2, 207 (1980).
    [CrossRef]
  15. L. F. Evans, I. A. Weeks, A. J. Eccleston, D. R. Packham, “Photochemical Ozone in Smoke From Prescribed Burning of Forests,” Environ. Sci. Technol. 11, 896 (1977).
    [CrossRef]
  16. M. Nicolet, “Stratospheric Ozone: An Introduction to Its Study,” Rev. Geophys. Space Phys. 13, 593 (1975).
    [CrossRef]
  17. M. B. McElroy, “Sources and Sinks for Nitrous Oxide,” in Proceedings, NATO Advanced Study Institute on Atmospheric Ozone—Its Variation and Human Influences,” Report PAA-EE-80-20, U.S. Department of Transportation (1980).
  18. D. H. Ehhalt, R. J. Zander, R. A. Lamontague, “On the Temporal Increase of Tropospheric CH4,” J. Geophys. Res. 88, 8442 (1983).
    [CrossRef]

1984 (3)

C. Covey, S. H. Schneider, S. C. Thompson, “Global Atmospheric Effects of Massive Smoke Injections from a Nuclear War: Results from General Circulation Model Simulations,” Nature 308, 21 (1984).
[CrossRef]

Y.-S. Chung, “On The Forest Fires and the Analysis of Air Quality Data and Total Atmospheric Ozone,” Atmos. Environ. 18, 2153 (1984).
[CrossRef]

Y.-S. Chung, H. V. Le, “Detection of Forest Fire Smoke Plumes by Satellite Imagery,” Atmos. Environ. 18, 2143 (1984).
[CrossRef]

1983 (2)

R. P. Turco, O. B. Toon, T. P. Ackerman, J. B. Pollack, C. Sagan, “Nuclear Winter: Global Consequences of Multiple Nuclear Explosions,” Science 222, 1283 (1983).
[CrossRef] [PubMed]

D. H. Ehhalt, R. J. Zander, R. A. Lamontague, “On the Temporal Increase of Tropospheric CH4,” J. Geophys. Res. 88, 8442 (1983).
[CrossRef]

1982 (1)

P. J. Crutzen, J. W. Birks, “The Atmosphere After a Nuclear War: Twilight at Noon,” Ambio 11, 115 (1982).

1980 (1)

W. Seiler, P. J. Crutzen, “Estimates of Gross and Net Fluxes of Carbon Between the Biosphere and the Atmosphere From Biomass Burning,” Climatic Change 2, 207 (1980).
[CrossRef]

1979 (1)

P. J. Crutzen, L. D. Heidt, J. P. Krasnec, W. H. Pollock, W. Seiler, “Biomass Burning As a Source of Atmospheric Gases CO, H2, H2O, NO, CH4 and COS,” Nature 282, 253 (1979).
[CrossRef]

1977 (1)

L. F. Evans, I. A. Weeks, A. J. Eccleston, D. R. Packham, “Photochemical Ozone in Smoke From Prescribed Burning of Forests,” Environ. Sci. Technol. 11, 896 (1977).
[CrossRef]

1976 (1)

W. C. Wang, A. A. Yung, T. Lacis, J. E. Hanson, “Greenhouse Effects Due to Man-Made Perturbations of Trace Gases,” Science 194, 685 (1976).
[CrossRef] [PubMed]

1975 (1)

M. Nicolet, “Stratospheric Ozone: An Introduction to Its Study,” Rev. Geophys. Space Phys. 13, 593 (1975).
[CrossRef]

Ackerman, T. P.

R. P. Turco, O. B. Toon, T. P. Ackerman, J. B. Pollack, C. Sagan, “Nuclear Winter: Global Consequences of Multiple Nuclear Explosions,” Science 222, 1283 (1983).
[CrossRef] [PubMed]

Birks, J. W.

P. J. Crutzen, J. W. Birks, “The Atmosphere After a Nuclear War: Twilight at Noon,” Ambio 11, 115 (1982).

Chung, Y.-S.

Y.-S. Chung, H. V. Le, “Detection of Forest Fire Smoke Plumes by Satellite Imagery,” Atmos. Environ. 18, 2143 (1984).
[CrossRef]

Y.-S. Chung, “On The Forest Fires and the Analysis of Air Quality Data and Total Atmospheric Ozone,” Atmos. Environ. 18, 2153 (1984).
[CrossRef]

Covey, C.

C. Covey, S. H. Schneider, S. C. Thompson, “Global Atmospheric Effects of Massive Smoke Injections from a Nuclear War: Results from General Circulation Model Simulations,” Nature 308, 21 (1984).
[CrossRef]

Crutzen, P. J.

P. J. Crutzen, J. W. Birks, “The Atmosphere After a Nuclear War: Twilight at Noon,” Ambio 11, 115 (1982).

W. Seiler, P. J. Crutzen, “Estimates of Gross and Net Fluxes of Carbon Between the Biosphere and the Atmosphere From Biomass Burning,” Climatic Change 2, 207 (1980).
[CrossRef]

P. J. Crutzen, L. D. Heidt, J. P. Krasnec, W. H. Pollock, W. Seiler, “Biomass Burning As a Source of Atmospheric Gases CO, H2, H2O, NO, CH4 and COS,” Nature 282, 253 (1979).
[CrossRef]

Eccleston, A. J.

L. F. Evans, I. A. Weeks, A. J. Eccleston, D. R. Packham, “Photochemical Ozone in Smoke From Prescribed Burning of Forests,” Environ. Sci. Technol. 11, 896 (1977).
[CrossRef]

Ehhalt, D. H.

D. H. Ehhalt, R. J. Zander, R. A. Lamontague, “On the Temporal Increase of Tropospheric CH4,” J. Geophys. Res. 88, 8442 (1983).
[CrossRef]

Evans, L. F.

L. F. Evans, I. A. Weeks, A. J. Eccleston, D. R. Packham, “Photochemical Ozone in Smoke From Prescribed Burning of Forests,” Environ. Sci. Technol. 11, 896 (1977).
[CrossRef]

Hanson, J. E.

W. C. Wang, A. A. Yung, T. Lacis, J. E. Hanson, “Greenhouse Effects Due to Man-Made Perturbations of Trace Gases,” Science 194, 685 (1976).
[CrossRef] [PubMed]

Heidt, L. D.

P. J. Crutzen, L. D. Heidt, J. P. Krasnec, W. H. Pollock, W. Seiler, “Biomass Burning As a Source of Atmospheric Gases CO, H2, H2O, NO, CH4 and COS,” Nature 282, 253 (1979).
[CrossRef]

Holzer, J. A.

A. S. Zachor, J. A. Holzer, F. G. Smith, “IR Signature Study,” Report AFGL-TR-79-1012, Honeywell Electro-Optics Center, Lexington, MA (Feb.1979).

Huppi, R. J.

B. P. Sandford, J. H. Schummers, J. D. Rex, J. Shumsky, R. J. Huppi, R. B. Sluder, “Aircraft Signatures in the Infrared 1.2 to 5.5 Micron Region Vol 1; Instrumentation,” Report AFGL-TR-76-0133(1), (ADBO14088L)Air Force Geophysics Laboratory, Hanscom AFB, MA (June1976).

Krasnec, J. P.

P. J. Crutzen, L. D. Heidt, J. P. Krasnec, W. H. Pollock, W. Seiler, “Biomass Burning As a Source of Atmospheric Gases CO, H2, H2O, NO, CH4 and COS,” Nature 282, 253 (1979).
[CrossRef]

Lacis, T.

W. C. Wang, A. A. Yung, T. Lacis, J. E. Hanson, “Greenhouse Effects Due to Man-Made Perturbations of Trace Gases,” Science 194, 685 (1976).
[CrossRef] [PubMed]

Lamontague, R. A.

D. H. Ehhalt, R. J. Zander, R. A. Lamontague, “On the Temporal Increase of Tropospheric CH4,” J. Geophys. Res. 88, 8442 (1983).
[CrossRef]

Le, H. V.

Y.-S. Chung, H. V. Le, “Detection of Forest Fire Smoke Plumes by Satellite Imagery,” Atmos. Environ. 18, 2143 (1984).
[CrossRef]

McElroy, M. B.

M. B. McElroy, “Sources and Sinks for Nitrous Oxide,” in Proceedings, NATO Advanced Study Institute on Atmospheric Ozone—Its Variation and Human Influences,” Report PAA-EE-80-20, U.S. Department of Transportation (1980).

Nicolet, M.

M. Nicolet, “Stratospheric Ozone: An Introduction to Its Study,” Rev. Geophys. Space Phys. 13, 593 (1975).
[CrossRef]

Packham, D. R.

L. F. Evans, I. A. Weeks, A. J. Eccleston, D. R. Packham, “Photochemical Ozone in Smoke From Prescribed Burning of Forests,” Environ. Sci. Technol. 11, 896 (1977).
[CrossRef]

Pollack, J. B.

R. P. Turco, O. B. Toon, T. P. Ackerman, J. B. Pollack, C. Sagan, “Nuclear Winter: Global Consequences of Multiple Nuclear Explosions,” Science 222, 1283 (1983).
[CrossRef] [PubMed]

Pollock, W. H.

P. J. Crutzen, L. D. Heidt, J. P. Krasnec, W. H. Pollock, W. Seiler, “Biomass Burning As a Source of Atmospheric Gases CO, H2, H2O, NO, CH4 and COS,” Nature 282, 253 (1979).
[CrossRef]

Rex, J. D.

B. P. Sandford, J. H. Schummers, J. D. Rex, J. Shumsky, R. J. Huppi, R. B. Sluder, “Aircraft Signatures in the Infrared 1.2 to 5.5 Micron Region Vol 1; Instrumentation,” Report AFGL-TR-76-0133(1), (ADBO14088L)Air Force Geophysics Laboratory, Hanscom AFB, MA (June1976).

Sagan, C.

R. P. Turco, O. B. Toon, T. P. Ackerman, J. B. Pollack, C. Sagan, “Nuclear Winter: Global Consequences of Multiple Nuclear Explosions,” Science 222, 1283 (1983).
[CrossRef] [PubMed]

Sandford, B. P.

B. P. Sandford, J. H. Schummers, J. D. Rex, J. Shumsky, R. J. Huppi, R. B. Sluder, “Aircraft Signatures in the Infrared 1.2 to 5.5 Micron Region Vol 1; Instrumentation,” Report AFGL-TR-76-0133(1), (ADBO14088L)Air Force Geophysics Laboratory, Hanscom AFB, MA (June1976).

Schneider, S. H.

C. Covey, S. H. Schneider, S. C. Thompson, “Global Atmospheric Effects of Massive Smoke Injections from a Nuclear War: Results from General Circulation Model Simulations,” Nature 308, 21 (1984).
[CrossRef]

Schummers, J. H.

B. P. Sandford, J. H. Schummers, J. D. Rex, J. Shumsky, R. J. Huppi, R. B. Sluder, “Aircraft Signatures in the Infrared 1.2 to 5.5 Micron Region Vol 1; Instrumentation,” Report AFGL-TR-76-0133(1), (ADBO14088L)Air Force Geophysics Laboratory, Hanscom AFB, MA (June1976).

J. Shumsky, J. H. Schummers, “AFGL-FLIR NKC-135 Aircraft Instruments,” Report AFGL-TR-82-0031, (ADB067085L)Air Force Geophysics Laboratory, Hanscom AFB, MA (Jan.1982).

Seiler, W.

W. Seiler, P. J. Crutzen, “Estimates of Gross and Net Fluxes of Carbon Between the Biosphere and the Atmosphere From Biomass Burning,” Climatic Change 2, 207 (1980).
[CrossRef]

P. J. Crutzen, L. D. Heidt, J. P. Krasnec, W. H. Pollock, W. Seiler, “Biomass Burning As a Source of Atmospheric Gases CO, H2, H2O, NO, CH4 and COS,” Nature 282, 253 (1979).
[CrossRef]

Shumsky, J.

J. Shumsky, J. H. Schummers, “AFGL-FLIR NKC-135 Aircraft Instruments,” Report AFGL-TR-82-0031, (ADB067085L)Air Force Geophysics Laboratory, Hanscom AFB, MA (Jan.1982).

B. P. Sandford, J. H. Schummers, J. D. Rex, J. Shumsky, R. J. Huppi, R. B. Sluder, “Aircraft Signatures in the Infrared 1.2 to 5.5 Micron Region Vol 1; Instrumentation,” Report AFGL-TR-76-0133(1), (ADBO14088L)Air Force Geophysics Laboratory, Hanscom AFB, MA (June1976).

Sluder, R. B.

B. P. Sandford, J. H. Schummers, J. D. Rex, J. Shumsky, R. J. Huppi, R. B. Sluder, “Aircraft Signatures in the Infrared 1.2 to 5.5 Micron Region Vol 1; Instrumentation,” Report AFGL-TR-76-0133(1), (ADBO14088L)Air Force Geophysics Laboratory, Hanscom AFB, MA (June1976).

Smith, F. G.

A. S. Zachor, J. A. Holzer, F. G. Smith, “IR Signature Study,” Report AFGL-TR-79-1012, Honeywell Electro-Optics Center, Lexington, MA (Feb.1979).

Thompson, S. C.

C. Covey, S. H. Schneider, S. C. Thompson, “Global Atmospheric Effects of Massive Smoke Injections from a Nuclear War: Results from General Circulation Model Simulations,” Nature 308, 21 (1984).
[CrossRef]

Toon, O. B.

R. P. Turco, O. B. Toon, T. P. Ackerman, J. B. Pollack, C. Sagan, “Nuclear Winter: Global Consequences of Multiple Nuclear Explosions,” Science 222, 1283 (1983).
[CrossRef] [PubMed]

Turco, R. P.

R. P. Turco, O. B. Toon, T. P. Ackerman, J. B. Pollack, C. Sagan, “Nuclear Winter: Global Consequences of Multiple Nuclear Explosions,” Science 222, 1283 (1983).
[CrossRef] [PubMed]

Wang, W. C.

W. C. Wang, A. A. Yung, T. Lacis, J. E. Hanson, “Greenhouse Effects Due to Man-Made Perturbations of Trace Gases,” Science 194, 685 (1976).
[CrossRef] [PubMed]

Weeks, I. A.

L. F. Evans, I. A. Weeks, A. J. Eccleston, D. R. Packham, “Photochemical Ozone in Smoke From Prescribed Burning of Forests,” Environ. Sci. Technol. 11, 896 (1977).
[CrossRef]

Yung, A. A.

W. C. Wang, A. A. Yung, T. Lacis, J. E. Hanson, “Greenhouse Effects Due to Man-Made Perturbations of Trace Gases,” Science 194, 685 (1976).
[CrossRef] [PubMed]

Zachor, A. S.

A. S. Zachor, J. A. Holzer, F. G. Smith, “IR Signature Study,” Report AFGL-TR-79-1012, Honeywell Electro-Optics Center, Lexington, MA (Feb.1979).

Zander, R. J.

D. H. Ehhalt, R. J. Zander, R. A. Lamontague, “On the Temporal Increase of Tropospheric CH4,” J. Geophys. Res. 88, 8442 (1983).
[CrossRef]

Ambio (1)

P. J. Crutzen, J. W. Birks, “The Atmosphere After a Nuclear War: Twilight at Noon,” Ambio 11, 115 (1982).

Atmos. Environ. (2)

Y.-S. Chung, “On The Forest Fires and the Analysis of Air Quality Data and Total Atmospheric Ozone,” Atmos. Environ. 18, 2153 (1984).
[CrossRef]

Y.-S. Chung, H. V. Le, “Detection of Forest Fire Smoke Plumes by Satellite Imagery,” Atmos. Environ. 18, 2143 (1984).
[CrossRef]

Climatic Change (1)

W. Seiler, P. J. Crutzen, “Estimates of Gross and Net Fluxes of Carbon Between the Biosphere and the Atmosphere From Biomass Burning,” Climatic Change 2, 207 (1980).
[CrossRef]

Environ. Sci. Technol. (1)

L. F. Evans, I. A. Weeks, A. J. Eccleston, D. R. Packham, “Photochemical Ozone in Smoke From Prescribed Burning of Forests,” Environ. Sci. Technol. 11, 896 (1977).
[CrossRef]

J. Geophys. Res. (1)

D. H. Ehhalt, R. J. Zander, R. A. Lamontague, “On the Temporal Increase of Tropospheric CH4,” J. Geophys. Res. 88, 8442 (1983).
[CrossRef]

Nature (2)

P. J. Crutzen, L. D. Heidt, J. P. Krasnec, W. H. Pollock, W. Seiler, “Biomass Burning As a Source of Atmospheric Gases CO, H2, H2O, NO, CH4 and COS,” Nature 282, 253 (1979).
[CrossRef]

C. Covey, S. H. Schneider, S. C. Thompson, “Global Atmospheric Effects of Massive Smoke Injections from a Nuclear War: Results from General Circulation Model Simulations,” Nature 308, 21 (1984).
[CrossRef]

Rev. Geophys. Space Phys. (1)

M. Nicolet, “Stratospheric Ozone: An Introduction to Its Study,” Rev. Geophys. Space Phys. 13, 593 (1975).
[CrossRef]

Science (2)

W. C. Wang, A. A. Yung, T. Lacis, J. E. Hanson, “Greenhouse Effects Due to Man-Made Perturbations of Trace Gases,” Science 194, 685 (1976).
[CrossRef] [PubMed]

R. P. Turco, O. B. Toon, T. P. Ackerman, J. B. Pollack, C. Sagan, “Nuclear Winter: Global Consequences of Multiple Nuclear Explosions,” Science 222, 1283 (1983).
[CrossRef] [PubMed]

Other (7)

Committee on the Atmospheric Effects of Nuclear Explosions, National Research Council, The Effects On the Atmosphere of a Major Nuclear Exchange (National Academy Press, Washington, DC, 1985).

Proceedings, Conference on Large Scale Fire Phenomenology (National Bureau of Standards, Gaithersburg, MD, Sept.1984).

A. S. Zachor, J. A. Holzer, F. G. Smith, “IR Signature Study,” Report AFGL-TR-79-1012, Honeywell Electro-Optics Center, Lexington, MA (Feb.1979).

“Impact of Forestry Burning Upon Air Quality,” EPA 910/9-78-052, Environmental Protection Agency, Region X, Seattle (Oct.1978).

M. B. McElroy, “Sources and Sinks for Nitrous Oxide,” in Proceedings, NATO Advanced Study Institute on Atmospheric Ozone—Its Variation and Human Influences,” Report PAA-EE-80-20, U.S. Department of Transportation (1980).

B. P. Sandford, J. H. Schummers, J. D. Rex, J. Shumsky, R. J. Huppi, R. B. Sluder, “Aircraft Signatures in the Infrared 1.2 to 5.5 Micron Region Vol 1; Instrumentation,” Report AFGL-TR-76-0133(1), (ADBO14088L)Air Force Geophysics Laboratory, Hanscom AFB, MA (June1976).

J. Shumsky, J. H. Schummers, “AFGL-FLIR NKC-135 Aircraft Instruments,” Report AFGL-TR-82-0031, (ADB067085L)Air Force Geophysics Laboratory, Hanscom AFB, MA (Jan.1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Topographical map of Bryant Mountain showing extent of the forest fire and the relative sizes of the footprints of the measuring instruments. The aircraft flight path is shown by the dashed circle.

Fig. 2
Fig. 2

Cross section through the Bryant Mountain summit NW–SE profile at 42° N latitude.

Fig. 3
Fig. 3

Visible picture of the Bryant Mountain forest fire with the smoke blowing away from the observer, allowing direct viewing of the fire front.

Fig. 4
Fig. 4

Visible picture of the Bryant Mountain forest fire looking through the smoke plume. The fire front is almost obscured from view.

Fig. 5
Fig. 5

Sample of Norelco thermal imagery in the 2.4–3.4-μm and 3.4–4.0-μm bands.

Fig. 6
Fig. 6

FLIR image of the Bryant Mountain forest fire in the E5, 8.3–9.5-μm bandpass.

Fig. 7
Fig. 7

Schematic of the FLIR image in Fig. 6 showing contours of apparent temperature of the Bryant Mountain forest fire.

Fig. 8
Fig. 8

Comparison of spectra of the Bryant Mountain forest fire in the 1800–4800-cm−1 region at 3.8-cm−1 resolution (top) with an immerse model calculation (bottom).

Fig. 9
Fig. 9

Spectral radiance of the Bryant Mountain forest fire showing detail from Fig. 8 (top) in the 1900–2500-cm−1 region at a spectral resolution of 0.95 cm−1.

Fig. 10
Fig. 10

Comparison of spectra of unburned forest and brush near the Bryant Mountain forest fire in the 1800–4800-cm−1 region at 3.8-cm−1 resolution (top) compared with an immerse model calculation (bottom).

Fig. 11
Fig. 11

Comparison of the measured forest fire spectra with midtran model at 1-cm−1 resolution for normal (75-ppb) and enhanced (530-ppb) CO mixing ratios.

Fig. 12
Fig. 12

Comparison of midtran model calculations with normal and enhanced concentrations of CO2 and N2O. The solid line is calculated with normal mixing ratios for CO2 (330 ppm) and N2O (300 ppb) for the atmospheric path length and aircraft-fire geometry of Fig. 2 and includes enhanced CO levels (530 ppb) to match the fire data as in Fig. 11. The broken lines are calculated with CO2 = 500 ppm and N2O = 600 ppb.

Tables (4)

Tables Icon

Table I Typical Instrument Parameters

Tables Icon

Table II Norelco Filter Bands

Tables Icon

Table III FLIR Filter Bands

Tables Icon

Table IV Atmospheric Species Detectable in Forest Fire Plumes

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N μ = N ν × ν 2 × 10 - 4 ( W · cm - 2 · μ m - 1 · sr - 1 ) , J μ = J ν × ν 2 × 10 - 3 ( W · sr - 1 · μ m - 1 ) ,

Metrics