Abstract

In a laboratory experiment the influence of very small chromaticity differences on the threshold of the human eye was measured. A considerable reduction of the luminance threshold was found when chromaticity differences under their perceivable threshold were presented simultaneously. The results were compared with MacAdam’s formula for combined luminance and chromaticity differences. These laboratory results were applied to the horizontal atmospheric visibility, using some field measurements of the inherent contrast of several natural materials and the spectral reflectance of typical colored paints. The chromaticity difference at visibility distances plays an important role, making some objects visible at distances where the luminance contrast is under its threshold. However, the influence of the chromaticity correction should influence the visibility by no more than 10%. The propagation in the atmosphere breaks the symmetry of the eye’s sensitivity curve, the long-wavelength part of the contrast almost determining the chromaticity difference and thus increasing the visibility of the object seen against the horizon.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Koschmieder, “Theorie der horizontalen Sichtweite,” Beitr. Phys. Freier Atm. 12, 33, 171 (1924).
  2. H. Horvath, “Atmospheric Visibility,” Atmos. Environ. 15, 1785 (1981).
    [CrossRef]
  3. W. E. K. Middleton, Vision Through the Atmosphere (U. Toronto Press, Canada, 1968).
  4. D. L. MacAdam, Color Measurement (Springer-Verlag, New York, 1981).
  5. Y. LeGrand, “Theories sur la metrique de l’espace des couleurs,” Die Farbe 20, 170 (1971).
  6. J. Gorraiz, T. Habenreich, H. Horvath, “Messung der Kontrastschwelle des menschlichen Auges fuer farbige Objekte,” presented at Proceedings, Fifth AIC Congress, Monte Carlo (1985); “Einfluss kleiner Farbdifferenzen auf die Kontrastschwelle des menschlichen Auges bei verschiedenen Farbbeleuchtungen,” Die Farbe, in press.
  7. H. R. Blackwell, “Contrast Thresholds of the Human Eye,” J. Opt. Soc. Am. 36, 624 (1946).
    [CrossRef] [PubMed]
  8. A. Angström, “On the Atmospheric Transmission of Sun Radiation,” Geogr. Annalen 12, 130 (1929).
    [CrossRef]
  9. H. Horvath, G. Presle, “Determination of the Atmospheric Extinction Coefficient by Measurement of Distant Contrasts,” Appl. Opt. 17, 1303 (1978).
    [CrossRef] [PubMed]
  10. M. R. Nagel, W. Kweta, H. Quenzel, R. Wendling, Daylight Illumination-Color-Contrast Tables (Academic, New York, 1978).
  11. H. Horvath, J. Gorraiz, G. Raimann, “The Influence of the Aerosol in Luminance and Color Differences of Distant Targets,” J. Aerosol Sci., to be published.
  12. D. B. Judd, A. A. Eastman, “Prediction of Target Visibility from the Colors of Target and Surround,” Illum. Eng. 66, 256 (1971).
  13. , “Influence of Color Contrast on Visual Acuity,” National Defense Research Commission, Office of Scientific Research Development Report 4541 (Eastman Kodak Co., Rochester, NY, 1944).
  14. I. Overington, Vision and Acquisition (Pentech Press, London, 1976).
  15. H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Microspectrophotometry of Human Photoreceptors,” in: Color Vision, J. D. Mollon, L. T. Sharpe, Eds., 69 (Academic, London, 1983).
  16. J. Gorraiz, “Ueber den Einfluss kleiner Farbdifferenzen auf die Kontrastschwelle des menschlichen Auges bei verschiedenen Farbbeleuchtungen,” Dissertation, Wien (1985).

1981 (1)

H. Horvath, “Atmospheric Visibility,” Atmos. Environ. 15, 1785 (1981).
[CrossRef]

1978 (1)

1971 (2)

Y. LeGrand, “Theories sur la metrique de l’espace des couleurs,” Die Farbe 20, 170 (1971).

D. B. Judd, A. A. Eastman, “Prediction of Target Visibility from the Colors of Target and Surround,” Illum. Eng. 66, 256 (1971).

1946 (1)

1929 (1)

A. Angström, “On the Atmospheric Transmission of Sun Radiation,” Geogr. Annalen 12, 130 (1929).
[CrossRef]

1924 (1)

H. Koschmieder, “Theorie der horizontalen Sichtweite,” Beitr. Phys. Freier Atm. 12, 33, 171 (1924).

Angström, A.

A. Angström, “On the Atmospheric Transmission of Sun Radiation,” Geogr. Annalen 12, 130 (1929).
[CrossRef]

Blackwell, H. R.

Bowmaker, J. K.

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Microspectrophotometry of Human Photoreceptors,” in: Color Vision, J. D. Mollon, L. T. Sharpe, Eds., 69 (Academic, London, 1983).

Dartnall, H. J. A.

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Microspectrophotometry of Human Photoreceptors,” in: Color Vision, J. D. Mollon, L. T. Sharpe, Eds., 69 (Academic, London, 1983).

Eastman, A. A.

D. B. Judd, A. A. Eastman, “Prediction of Target Visibility from the Colors of Target and Surround,” Illum. Eng. 66, 256 (1971).

Gorraiz, J.

H. Horvath, J. Gorraiz, G. Raimann, “The Influence of the Aerosol in Luminance and Color Differences of Distant Targets,” J. Aerosol Sci., to be published.

J. Gorraiz, T. Habenreich, H. Horvath, “Messung der Kontrastschwelle des menschlichen Auges fuer farbige Objekte,” presented at Proceedings, Fifth AIC Congress, Monte Carlo (1985); “Einfluss kleiner Farbdifferenzen auf die Kontrastschwelle des menschlichen Auges bei verschiedenen Farbbeleuchtungen,” Die Farbe, in press.

J. Gorraiz, “Ueber den Einfluss kleiner Farbdifferenzen auf die Kontrastschwelle des menschlichen Auges bei verschiedenen Farbbeleuchtungen,” Dissertation, Wien (1985).

Habenreich, T.

J. Gorraiz, T. Habenreich, H. Horvath, “Messung der Kontrastschwelle des menschlichen Auges fuer farbige Objekte,” presented at Proceedings, Fifth AIC Congress, Monte Carlo (1985); “Einfluss kleiner Farbdifferenzen auf die Kontrastschwelle des menschlichen Auges bei verschiedenen Farbbeleuchtungen,” Die Farbe, in press.

Horvath, H.

H. Horvath, “Atmospheric Visibility,” Atmos. Environ. 15, 1785 (1981).
[CrossRef]

H. Horvath, G. Presle, “Determination of the Atmospheric Extinction Coefficient by Measurement of Distant Contrasts,” Appl. Opt. 17, 1303 (1978).
[CrossRef] [PubMed]

J. Gorraiz, T. Habenreich, H. Horvath, “Messung der Kontrastschwelle des menschlichen Auges fuer farbige Objekte,” presented at Proceedings, Fifth AIC Congress, Monte Carlo (1985); “Einfluss kleiner Farbdifferenzen auf die Kontrastschwelle des menschlichen Auges bei verschiedenen Farbbeleuchtungen,” Die Farbe, in press.

H. Horvath, J. Gorraiz, G. Raimann, “The Influence of the Aerosol in Luminance and Color Differences of Distant Targets,” J. Aerosol Sci., to be published.

Judd, D. B.

D. B. Judd, A. A. Eastman, “Prediction of Target Visibility from the Colors of Target and Surround,” Illum. Eng. 66, 256 (1971).

Koschmieder, H.

H. Koschmieder, “Theorie der horizontalen Sichtweite,” Beitr. Phys. Freier Atm. 12, 33, 171 (1924).

Kweta, W.

M. R. Nagel, W. Kweta, H. Quenzel, R. Wendling, Daylight Illumination-Color-Contrast Tables (Academic, New York, 1978).

LeGrand, Y.

Y. LeGrand, “Theories sur la metrique de l’espace des couleurs,” Die Farbe 20, 170 (1971).

MacAdam, D. L.

D. L. MacAdam, Color Measurement (Springer-Verlag, New York, 1981).

Middleton, W. E. K.

W. E. K. Middleton, Vision Through the Atmosphere (U. Toronto Press, Canada, 1968).

Mollon, J. D.

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Microspectrophotometry of Human Photoreceptors,” in: Color Vision, J. D. Mollon, L. T. Sharpe, Eds., 69 (Academic, London, 1983).

Nagel, M. R.

M. R. Nagel, W. Kweta, H. Quenzel, R. Wendling, Daylight Illumination-Color-Contrast Tables (Academic, New York, 1978).

Overington, I.

I. Overington, Vision and Acquisition (Pentech Press, London, 1976).

Presle, G.

Quenzel, H.

M. R. Nagel, W. Kweta, H. Quenzel, R. Wendling, Daylight Illumination-Color-Contrast Tables (Academic, New York, 1978).

Raimann, G.

H. Horvath, J. Gorraiz, G. Raimann, “The Influence of the Aerosol in Luminance and Color Differences of Distant Targets,” J. Aerosol Sci., to be published.

Wendling, R.

M. R. Nagel, W. Kweta, H. Quenzel, R. Wendling, Daylight Illumination-Color-Contrast Tables (Academic, New York, 1978).

Appl. Opt. (1)

Atmos. Environ. (1)

H. Horvath, “Atmospheric Visibility,” Atmos. Environ. 15, 1785 (1981).
[CrossRef]

Beitr. Phys. Freier Atm. (1)

H. Koschmieder, “Theorie der horizontalen Sichtweite,” Beitr. Phys. Freier Atm. 12, 33, 171 (1924).

Die Farbe (1)

Y. LeGrand, “Theories sur la metrique de l’espace des couleurs,” Die Farbe 20, 170 (1971).

Geogr. Annalen (1)

A. Angström, “On the Atmospheric Transmission of Sun Radiation,” Geogr. Annalen 12, 130 (1929).
[CrossRef]

Illum. Eng. (1)

D. B. Judd, A. A. Eastman, “Prediction of Target Visibility from the Colors of Target and Surround,” Illum. Eng. 66, 256 (1971).

J. Opt. Soc. Am. (1)

Other (9)

W. E. K. Middleton, Vision Through the Atmosphere (U. Toronto Press, Canada, 1968).

D. L. MacAdam, Color Measurement (Springer-Verlag, New York, 1981).

, “Influence of Color Contrast on Visual Acuity,” National Defense Research Commission, Office of Scientific Research Development Report 4541 (Eastman Kodak Co., Rochester, NY, 1944).

I. Overington, Vision and Acquisition (Pentech Press, London, 1976).

H. J. A. Dartnall, J. K. Bowmaker, J. D. Mollon, “Microspectrophotometry of Human Photoreceptors,” in: Color Vision, J. D. Mollon, L. T. Sharpe, Eds., 69 (Academic, London, 1983).

J. Gorraiz, “Ueber den Einfluss kleiner Farbdifferenzen auf die Kontrastschwelle des menschlichen Auges bei verschiedenen Farbbeleuchtungen,” Dissertation, Wien (1985).

J. Gorraiz, T. Habenreich, H. Horvath, “Messung der Kontrastschwelle des menschlichen Auges fuer farbige Objekte,” presented at Proceedings, Fifth AIC Congress, Monte Carlo (1985); “Einfluss kleiner Farbdifferenzen auf die Kontrastschwelle des menschlichen Auges bei verschiedenen Farbbeleuchtungen,” Die Farbe, in press.

M. R. Nagel, W. Kweta, H. Quenzel, R. Wendling, Daylight Illumination-Color-Contrast Tables (Academic, New York, 1978).

H. Horvath, J. Gorraiz, G. Raimann, “The Influence of the Aerosol in Luminance and Color Differences of Distant Targets,” J. Aerosol Sci., to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Spectral characteristics of the contrasts presented to the observers in the laboratory experiment. Five colored contrasts and a neutral color (Fil3) contrast were produced using different color filters.

Fig. 2
Fig. 2

Spectral characteristics of the inherent contrast of four natural materials seen against the horizon. The measurements of the inherent contrast (at a distance r = 0) of soil, grass, and brick were performed under two different illumination situations: in sunlight (curves with *) and in shadow.

Fig. 3
Fig. 3

Spectral characteristics of the inherent contrast of six typical colored paints seen against a white background. The inherent contrast (at a distance r = 0) of these materials was calculated using MacAdam’s reflectance data and assuming an ideal white background (horizon).

Fig. 4
Fig. 4

Spectral characteristics of the contrast of the natural materials seen against a white horizon at visibility distance. A luminance contrast threshold of 0.003(absolute value measured in the laboratory experiment) was assumed. All contrasts become reddish at this distance due to their propagation through a clear atmosphere.

Fig. 5
Fig. 5

Spectral characteristics of the contrast of six typical colored paints seen against a white horizon at visibility distance. The contrasts of these objects show properties similar to those in Fig. 4; they become reddish with increasing distance.

Tables (6)

Tables Icon

Table I Visual Conditions

Tables Icon

Table II Laboratory Measurements

Tables Icon

Table III Calculated Visibilitles Assuming an Absolute Value of 0.02 for the Luminance Threshold

Tables Icon

Table IV Reductions of Luminescence Threshold

Tables Icon

Table V Calculated Visibilities Assuming an Absolute Value of 0.003 for the Luminance Threshold

Tables Icon

Table VI Calculated Visibilities and Corrected Visibillties of Model Theoretical Objects Seen Against a White Horizon Using MacAdam’s Formula and Assuming an Absolute Value of 0.02 for the Luminance Threshold

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ɛ = C 0 · exp ( - b ext · V )
V = ln ( C 0 / ɛ ) / b ext
V = 3.9 / b ext .
V = ( 3.9 + ln C 0 ) / b ext .
ɛ = 0.02 400 800 ( R 0 - R h ) · exp ( - b ext · V ) · V ( λ ) · d λ 400 800 R h · V ( λ ) · d λ .
X = 400 nm 800 nm x ¯ ( λ ) · { R h · [ 1 - exp ( - b ext · r ) ] + f ( λ ) · R 0 · exp ( - b ext · r ) } · d λ ,
C F = g 11 · ( Δ x ) 2 + g 12 · ( Δ x ) ( Δ y ) + g 22 · ( Δ y ) 2
g 33 · ( Δ Y / Y ) 2 ,
b ext ( λ ) = b ext ( 550 nm ) · ( λ / 550 ) - α .
C T = C C 2 + C L 2 ,
C T = a · C C 2 + b · C L 2 ,

Metrics