## Abstract

Results of experimental measurements and theoretical calculations concerning the scattering of plane wave radiation by a system of two interacting spheres are presented. In particular, the complex scattering amplitude of such a system and the phenomena of specular resonances are addressed. Preliminary calculations of the two-sphere Muller matrix are also considered.

© 1986 Optical Society of America

Full Article |

PDF Article
### Equations (7)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$\begin{array}{l}{E}_{ab}=\frac{i\hspace{0.17em}\text{exp}(ikr)}{kr}[{S}_{a}(kr,\theta ,\varphi ;\alpha )+\text{exp}(-ikd\hspace{0.17em}\text{cos}\theta ){S}_{b}(kr,\theta ,\varphi ;\alpha )]\\ =\frac{i\hspace{0.17em}\text{exp}(ikr)}{kr}{S}_{a}(kr,\theta +\alpha ,\varphi )\{1+\text{exp}[ikd(\text{cos}\alpha -\text{cos}\theta )]\}.\end{array}$$
(2)
$$Q=\frac{4\pi}{{k}^{2}G}\text{Re}[{S}_{\gamma}(\beta =0)].$$
(3)
$$Q=\frac{2}{{(ka)}^{2}}\text{Re}[{S}_{\gamma}(\beta =0)].$$
(4)
$$P=\frac{2}{{(ka)}^{2}}\text{Im}[{S}_{\gamma}(\beta )].$$
(5)
$$\tilde{P}=\left[\begin{array}{llll}{P}_{11}\hfill & {P}_{12}\hfill & 0\hfill & 0\hfill \\ {P}_{12}\hfill & {P}_{11}\hfill & 0\hfill & 0\hfill \\ 0\hfill & 0\hfill & {P}_{33}\hfill & {P}_{34}\hfill \\ 0\hfill & 0\hfill & -{P}_{34}\hfill & {P}_{33}\hfill \end{array}\right],$$
(6)
$$\begin{array}{l}{P}_{11}=(\mid {S}_{0}{\mid}^{2}+\mid {S}_{\pi /2}{\mid}^{2})/2,\\ {P}_{12}=(\mid {S}_{0}{\mid}^{2}-\mid {S}_{\pi /2}{\mid}^{2})/2,\\ {P}_{33}=\text{Re}({S}_{\pi /2}{S}_{0}^{*}),\hspace{0.17em}\text{and}\hspace{0.17em}{P}_{34}=\text{Im}({S}_{0}{S}_{\pi /2}^{*}).\end{array}$$
(7)
$$\left(\begin{array}{c}{E}_{s\Vert}\\ {E}_{s\perp}\end{array}\right)=\frac{\text{exp}(ikr)}{ikr}\left[\begin{array}{cc}{S}_{2}(={S}_{0})& {S}_{3}\\ {S}_{4}& {S}_{1}(={S}_{\pi /2})\end{array}\right]\hspace{0.17em}\left(\begin{array}{c}{E}_{i\Vert}\\ {E}_{i\perp}\end{array}\right).$$