Abstract

A dual CO2 laser system was used to measure aerosol backscatter spectral signatures from dust minerals (kaolin, illite, montmorillonite, colemanite, and limestone) as well as from a soil sample from Dugway Proving Ground, UT. Complex refractive indices measured from bulk samples of the materials and particle size distributions measured with a cascade impactor were used to compute theoretical backscatter spectra using Mie theory. The measured signatures agreed well with calculated signatures for most minerals and the soil sample. The experiment demonstrated the feasibility of detecting the compositional elements of dust using a CO2 laser-based system.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Byer, E. R. Murray, “Remote Monitoring with Laser Sources,” in Air Pollution Analysis, R. Perry, Ed. (Chapman and Hall, London, 1977).
  2. W. B. Grant, “An Intermediate-Distance Dual cw CO2 Laser Remote Sensor for Atmospheric Trace Gases,” in Technical Digest, Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, DC, 1985), paper TuC30.
  3. J. Rothermel, “Coherent Lidar Measurements of Backscatter and Transmission Loss of Profiles,” in Technical Digest, Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, DC, 1985), paper WC13.
  4. E. R. Murray, J. E. van der Laan, “Remote Measurement of Ethylene Using a CO2 Differential-Absorption Lidar,” Appl. Opt. 17, 814 (1978).
    [Crossref] [PubMed]
  5. J. L. Bufton et al., “Frequency-Doubled CO2 Lidar Measurement and Diode Laser Spectroscopy of Atmospheric CO2,” Appl. Opt. 22, 2592 (1983).
    [Crossref] [PubMed]
  6. D. F. Flanigan, H. P. DeLong, “Spectral Absorption Characteristics of the Major Components of Dust Clouds,” Appl. Opt. 10, 51 (1971).
    [Crossref] [PubMed]
  7. J. F. Ebersol et al., “Measurement of the Infrared Optical Properties of Aerosols,” in Technical Digest, Topical Meeting on Atmospheric Aerosols, Their Optical Properties and Effects (Optical Society of America, Washington, DC, 1976), paper TUB9.
  8. H. T. Mudd, C. H. Kruger, E. R. Murray, “Measurement of IR Laser Backscatter from Sulfuric Acid and Ammonium Sulfate Aerosols,” Appl. Opt. 21, 1146 (1982).
    [Crossref] [PubMed]
  9. M. L. Wright, “Lidar Determination of the Composition of Atmospheric Aerosols,” Final Report, contract NAS2-8914, SRI Project 4358, SRI International, Menlo Park, CA (Jan.1979).
  10. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  11. M. Kerker, Ed., Electromagnetic Scattering (MacMillan, New York, 1963).
  12. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969).
  13. E. J. McCartney, Optics of the Atmosphere (WileyNew York, 1976).
  14. M. L. Wright, G. Gioumousis, “Studies of DIAL/DISC Remote Sensing Techniques for Chemical Agent Detection,” Phase I Theoretical Report for Chemical Systems Laboratory, Report ARCSL-CR-80042, contract DAAK11-78-C-0074, SRI Project 764# #w, Semiempirical Theory and Its Application to Tropospheric Aerosols,” J. Atmos. Sci. 37, (1979).
  15. W. M. Irvien, J. B. Pollack, “Title,” Icarus 8, 324 (1968).
  16. J. B. Pollack, J. N. Cuzzi, “Scattering by Nonspherical Particles of Size Comparable to a Wavelength: A New Semiempirical Theory and Its Application to Tropospheric Aerosols,” J. Atmos. Sci. 37, 868 (1979).
    [Crossref]
  17. R. M. Welch, S. K. Cox, “Nonspherical Extinction and Absorption Efficiencies,” Appl. Opt. 17, 3159 (1978).
    [Crossref] [PubMed]
  18. M. R. Querry, “Molecular and Crystalline Electromagnetic Properties of Selected Condensed Materials in the Infrared,” Final Report, U.S. Army Research Office, grant DAAG29-76-G-0185 (30Aug.1979).
  19. A. B. Garrett, W. T. Lippincott, F. H. Verhoek, Chemistry—A Study of Matter, (Blaisdell, MA., 1968).
  20. M. R. Querry, Science Metrics, Inc.; private communication (1984).
  21. Georgia Kaolin Co., Union, NJ, descriptive literature (1984).
  22. C. E. Lapple, “Particle-Size Analysis: Analyzers,” Chem. Eng. 75, 149 (20May1968).
  23. C. Witham, “Title,” in Dry Dispersion with Sonic Velocity Nozzles, A. Deepak, Ed. (Deepak, Hampton, VA, Location, 1983).
  24. M. R. Querry, Science Metrics, Inc., private communication (1985).
  25. S. Herring, U. California, Chemical Engineering Department; private communication (1985).

1983 (1)

1982 (1)

1979 (2)

M. L. Wright, G. Gioumousis, “Studies of DIAL/DISC Remote Sensing Techniques for Chemical Agent Detection,” Phase I Theoretical Report for Chemical Systems Laboratory, Report ARCSL-CR-80042, contract DAAK11-78-C-0074, SRI Project 764# #w, Semiempirical Theory and Its Application to Tropospheric Aerosols,” J. Atmos. Sci. 37, (1979).

J. B. Pollack, J. N. Cuzzi, “Scattering by Nonspherical Particles of Size Comparable to a Wavelength: A New Semiempirical Theory and Its Application to Tropospheric Aerosols,” J. Atmos. Sci. 37, 868 (1979).
[Crossref]

1978 (2)

1971 (1)

1968 (2)

W. M. Irvien, J. B. Pollack, “Title,” Icarus 8, 324 (1968).

C. E. Lapple, “Particle-Size Analysis: Analyzers,” Chem. Eng. 75, 149 (20May1968).

Bufton, J. L.

Byer, R. L.

R. L. Byer, E. R. Murray, “Remote Monitoring with Laser Sources,” in Air Pollution Analysis, R. Perry, Ed. (Chapman and Hall, London, 1977).

California, U.

S. Herring, U. California, Chemical Engineering Department; private communication (1985).

Cox, S. K.

Cuzzi, J. N.

J. B. Pollack, J. N. Cuzzi, “Scattering by Nonspherical Particles of Size Comparable to a Wavelength: A New Semiempirical Theory and Its Application to Tropospheric Aerosols,” J. Atmos. Sci. 37, 868 (1979).
[Crossref]

Deirmendjian, D.

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969).

DeLong, H. P.

Ebersol, J. F.

J. F. Ebersol et al., “Measurement of the Infrared Optical Properties of Aerosols,” in Technical Digest, Topical Meeting on Atmospheric Aerosols, Their Optical Properties and Effects (Optical Society of America, Washington, DC, 1976), paper TUB9.

Flanigan, D. F.

Garrett, A. B.

A. B. Garrett, W. T. Lippincott, F. H. Verhoek, Chemistry—A Study of Matter, (Blaisdell, MA., 1968).

Gioumousis, G.

M. L. Wright, G. Gioumousis, “Studies of DIAL/DISC Remote Sensing Techniques for Chemical Agent Detection,” Phase I Theoretical Report for Chemical Systems Laboratory, Report ARCSL-CR-80042, contract DAAK11-78-C-0074, SRI Project 764# #w, Semiempirical Theory and Its Application to Tropospheric Aerosols,” J. Atmos. Sci. 37, (1979).

Grant, W. B.

W. B. Grant, “An Intermediate-Distance Dual cw CO2 Laser Remote Sensor for Atmospheric Trace Gases,” in Technical Digest, Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, DC, 1985), paper TuC30.

Herring, S.

S. Herring, U. California, Chemical Engineering Department; private communication (1985).

Irvien, W. M.

W. M. Irvien, J. B. Pollack, “Title,” Icarus 8, 324 (1968).

Kruger, C. H.

Lapple, C. E.

C. E. Lapple, “Particle-Size Analysis: Analyzers,” Chem. Eng. 75, 149 (20May1968).

Lippincott, W. T.

A. B. Garrett, W. T. Lippincott, F. H. Verhoek, Chemistry—A Study of Matter, (Blaisdell, MA., 1968).

McCartney, E. J.

E. J. McCartney, Optics of the Atmosphere (WileyNew York, 1976).

Mudd, H. T.

Murray, E. R.

Pollack, J. B.

J. B. Pollack, J. N. Cuzzi, “Scattering by Nonspherical Particles of Size Comparable to a Wavelength: A New Semiempirical Theory and Its Application to Tropospheric Aerosols,” J. Atmos. Sci. 37, 868 (1979).
[Crossref]

W. M. Irvien, J. B. Pollack, “Title,” Icarus 8, 324 (1968).

Querry, M. R.

M. R. Querry, “Molecular and Crystalline Electromagnetic Properties of Selected Condensed Materials in the Infrared,” Final Report, U.S. Army Research Office, grant DAAG29-76-G-0185 (30Aug.1979).

M. R. Querry, Science Metrics, Inc.; private communication (1984).

M. R. Querry, Science Metrics, Inc., private communication (1985).

Rothermel, J.

J. Rothermel, “Coherent Lidar Measurements of Backscatter and Transmission Loss of Profiles,” in Technical Digest, Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, DC, 1985), paper WC13.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

van der Laan, J. E.

Verhoek, F. H.

A. B. Garrett, W. T. Lippincott, F. H. Verhoek, Chemistry—A Study of Matter, (Blaisdell, MA., 1968).

Welch, R. M.

Witham, C.

C. Witham, “Title,” in Dry Dispersion with Sonic Velocity Nozzles, A. Deepak, Ed. (Deepak, Hampton, VA, Location, 1983).

Wright, M. L.

M. L. Wright, G. Gioumousis, “Studies of DIAL/DISC Remote Sensing Techniques for Chemical Agent Detection,” Phase I Theoretical Report for Chemical Systems Laboratory, Report ARCSL-CR-80042, contract DAAK11-78-C-0074, SRI Project 764# #w, Semiempirical Theory and Its Application to Tropospheric Aerosols,” J. Atmos. Sci. 37, (1979).

M. L. Wright, “Lidar Determination of the Composition of Atmospheric Aerosols,” Final Report, contract NAS2-8914, SRI Project 4358, SRI International, Menlo Park, CA (Jan.1979).

Appl. Opt. (5)

Chem. Eng. (1)

C. E. Lapple, “Particle-Size Analysis: Analyzers,” Chem. Eng. 75, 149 (20May1968).

Icarus (1)

W. M. Irvien, J. B. Pollack, “Title,” Icarus 8, 324 (1968).

J. Atmos. Sci. (2)

J. B. Pollack, J. N. Cuzzi, “Scattering by Nonspherical Particles of Size Comparable to a Wavelength: A New Semiempirical Theory and Its Application to Tropospheric Aerosols,” J. Atmos. Sci. 37, 868 (1979).
[Crossref]

M. L. Wright, G. Gioumousis, “Studies of DIAL/DISC Remote Sensing Techniques for Chemical Agent Detection,” Phase I Theoretical Report for Chemical Systems Laboratory, Report ARCSL-CR-80042, contract DAAK11-78-C-0074, SRI Project 764# #w, Semiempirical Theory and Its Application to Tropospheric Aerosols,” J. Atmos. Sci. 37, (1979).

Other (16)

C. Witham, “Title,” in Dry Dispersion with Sonic Velocity Nozzles, A. Deepak, Ed. (Deepak, Hampton, VA, Location, 1983).

M. R. Querry, Science Metrics, Inc., private communication (1985).

S. Herring, U. California, Chemical Engineering Department; private communication (1985).

R. L. Byer, E. R. Murray, “Remote Monitoring with Laser Sources,” in Air Pollution Analysis, R. Perry, Ed. (Chapman and Hall, London, 1977).

W. B. Grant, “An Intermediate-Distance Dual cw CO2 Laser Remote Sensor for Atmospheric Trace Gases,” in Technical Digest, Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, DC, 1985), paper TuC30.

J. Rothermel, “Coherent Lidar Measurements of Backscatter and Transmission Loss of Profiles,” in Technical Digest, Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, DC, 1985), paper WC13.

M. R. Querry, “Molecular and Crystalline Electromagnetic Properties of Selected Condensed Materials in the Infrared,” Final Report, U.S. Army Research Office, grant DAAG29-76-G-0185 (30Aug.1979).

A. B. Garrett, W. T. Lippincott, F. H. Verhoek, Chemistry—A Study of Matter, (Blaisdell, MA., 1968).

M. R. Querry, Science Metrics, Inc.; private communication (1984).

Georgia Kaolin Co., Union, NJ, descriptive literature (1984).

M. L. Wright, “Lidar Determination of the Composition of Atmospheric Aerosols,” Final Report, contract NAS2-8914, SRI Project 4358, SRI International, Menlo Park, CA (Jan.1979).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

M. Kerker, Ed., Electromagnetic Scattering (MacMillan, New York, 1963).

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969).

E. J. McCartney, Optics of the Atmosphere (WileyNew York, 1976).

J. F. Ebersol et al., “Measurement of the Infrared Optical Properties of Aerosols,” in Technical Digest, Topical Meeting on Atmospheric Aerosols, Their Optical Properties and Effects (Optical Society of America, Washington, DC, 1976), paper TUB9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Aerosol generator and chamber.

Fig. 2
Fig. 2

Schematic diagram of optical and electronic systems for measuring backscattering signatures from dust clouds.

Fig. 3
Fig. 3

Measured colemanite backscatter compared with theoretical Mie backscatter values—MMD = 1.23 μm, σg, = 2.75.

Fig. 4
Fig. 4

Measured kaolin flat D backscatter compared with theoretical Mie backscatter values—MMD = 1.8 μm, σg = 2.88.

Fig. 5
Fig. 5

Measured kaolin PX backscatter compared with theoretical Mie backscatter values—MMD = 1.00 μm, σg = 2.4.

Fig. 6
Fig. 6

Measured limestone backscatter compared with theoretical Mie backscatter values—MMD = 0.2, 1.11, and 2.00 μm.

Fig. 7
Fig. 7

Measured Dugway dirt backscatter compared with theoretical Mie backscatter values—MMD = 0.2, 0.97, and 2.00 μm.

Fig. 8
Fig. 8

Measured montmorillonite backscatter compared with theoretical Mie backscatter values for (a) MMD = 1.33 μm, σg = 2.38, and (b) MMD = 5 μm, σg = 2.4.

Fig. 9
Fig. 9

Measured illite backscatter compared with theoretical Mie backscatter values for (a) MMD = 0.9 μm, σg = 2.32, and (b) MMD = 2 μm, σg = 2.32.

Fig. 10
Fig. 10

Measured kaolin UF backscatter compared wilth theoretical Mie backscatter values–MMD = 0.8 μm, σg = 2.35.

Tables (1)

Tables Icon

Table I Aerosol Size Distribution

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

σ π = 1 k 2 I π = 1 k 2 | n = 1 ( - 1 ) n ( n + 1 2 ) ( b n - a n ) | 2 ,
Q ext = 2 X 2 n = 1 ( 2 n + 1 ) [ Re ( a n ) + Re ( b n ) ] .
β π = σ π n ( D ) d D = 2 k 3 I π n ( X ) d X ; β ext = σ ext n ( D ) d D = 2 π k 3 X 2 Q ext n ( X ) d X .
N p = 0 n ( D ) d D = 2 k 0 n ( X ) d X .
τ = β scat · d 0.1 ,
d Φ x d ln D = 1 ( 2 π ) ln σ g exp - ( ln D - ln D m x ( 2 ) ln σ g ) 2 ,
β π = N p 1 k 2 I π ϕ ( X ) d X , β ext = N p π k 2 X 2 Q ext ϕ ( X ) d X .
P r ( λ ) = P t ( λ ) A r β π ( λ ) η a E f ( λ ) ,
E f ( λ ) = l 1 l 2 exp - 2 β ext ( λ ) ( l - l 1 ) l 2 d l ,
β π ( λ ) = P r ( λ ) P t ( λ ) A r η a E f ( λ ) .
β π ( λ ) β π ( λ r ) = P r ( λ ) P t ( λ r ) E f ( λ r ) P r ( λ r ) P t ( λ ) E f ( λ ) ,

Metrics