Abstract

An airborne differential absorption lidar system employing high-energy line-tunable CO2 lasers has been used to map cross-plume vertical distributions resulting from a near-surface SF6 tracer gas release. The remote SF6 tracer measurement technique may be suitable to evaluate distributions of toxic and hazardous materials accidentally released into the atmosphere providing tracer gas is also released during the accident. The technique also may provide transport and diffusion data needed for development and validation of atmospheric computational models that predict downwind distribution of materials released into the atmosphere.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption.” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer-Verlag, New York, 1976).
    [CrossRef]
  2. W. B. Grant, R. T. Menzies, “A Survey of Laser and Selected Optical Systems for Remote Measurement of Pollutant Gas Concentrations,” APCA J. 33, 187 (1983).
  3. R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984).
  4. E. R. Murray, “Remote Measurement of Gases Using Discreetly Tunable Infrared Lasers,” Opt. Eng. 16, 284 (1977).
    [CrossRef]
  5. E. V. Browell et al., “NASA Multi Purpose Airborne DIAL System and Measurements of Ozone and Aerosol Profiles,” Appl. Opt. 22, 522 (1983).
    [CrossRef] [PubMed]
  6. W. Englisch, W. Wiesemann, J. Boscher, M. Rother, “Laser Remote Sensing Measurements of Atmospheric Species and Natural Target Reflectivities,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer-Verlag, New York, 1983).
  7. H. Ahlberg, S. Lundqvist, B. Olsson, “CO2 Laser Long-Path Measurements of Diffuse Leakages from a Petrochemical Plant,” Appl. Opt. 24, 3924 (1985).
    [CrossRef] [PubMed]
  8. K. Asai, “Airborne CO2 Laser Heterodyne Sensor for Monitoring Regional Ozone Distributions,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer-Verlag, New York, 1983).
  9. J. G. Hawley, L. D. Fletcher, G. F. Wallace, “Ground-Based Ultraviolet Differential Absorption Lidar (DIAL) System and Measurements,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer-Verlag, New York, 1983).
  10. W. B. Grant, “Effect of Differential Spectral Reflectance on DIAL Measurements Using Topographic Targets,” Appl. Opt. 21, 2390 (1983).
    [CrossRef]
  11. W. Wiesemann, F. Lehmann, “Reliability of Airborne CO2 DIAL Measurements: Schemes for Testing Technical Performance and Reducing Interference from Differential Reflectance,” Appl. Opt. 24, 3481 (1985).
    [CrossRef] [PubMed]
  12. M. S. Shumate, S. Lundquist, V. Persson, S. T. Eng, “Differential Reflectance of Natural and Man-Made Materials at CO2 Laser Wavelengths,” Appl. Opt. 21, 2386 (1982).
    [CrossRef] [PubMed]
  13. K. Asai, T. Igarashi, “Interference of Differential Reflectance of Moist Topographic Targets in CO2 DIAL Ozone Measurement,” Appl. Opt. 23, 734 (1984).
    [CrossRef] [PubMed]
  14. J. C. Petheram, “Differential Backscatter from the Atmospheric Aerosol: The Implications for IR Differential Absorption Lidar,” Appl. Opt. 20, 394 (1981).
    [CrossRef]

1985

1984

1983

1982

1981

J. C. Petheram, “Differential Backscatter from the Atmospheric Aerosol: The Implications for IR Differential Absorption Lidar,” Appl. Opt. 20, 394 (1981).
[CrossRef]

1977

E. R. Murray, “Remote Measurement of Gases Using Discreetly Tunable Infrared Lasers,” Opt. Eng. 16, 284 (1977).
[CrossRef]

Ahlberg, H.

Asai, K.

K. Asai, T. Igarashi, “Interference of Differential Reflectance of Moist Topographic Targets in CO2 DIAL Ozone Measurement,” Appl. Opt. 23, 734 (1984).
[CrossRef] [PubMed]

K. Asai, “Airborne CO2 Laser Heterodyne Sensor for Monitoring Regional Ozone Distributions,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer-Verlag, New York, 1983).

Boscher, J.

W. Englisch, W. Wiesemann, J. Boscher, M. Rother, “Laser Remote Sensing Measurements of Atmospheric Species and Natural Target Reflectivities,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer-Verlag, New York, 1983).

Browell, E. V.

Collis, R. T. H.

R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption.” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer-Verlag, New York, 1976).
[CrossRef]

Eng, S. T.

Englisch, W.

W. Englisch, W. Wiesemann, J. Boscher, M. Rother, “Laser Remote Sensing Measurements of Atmospheric Species and Natural Target Reflectivities,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer-Verlag, New York, 1983).

Fletcher, L. D.

J. G. Hawley, L. D. Fletcher, G. F. Wallace, “Ground-Based Ultraviolet Differential Absorption Lidar (DIAL) System and Measurements,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer-Verlag, New York, 1983).

Grant, W. B.

W. B. Grant, “Effect of Differential Spectral Reflectance on DIAL Measurements Using Topographic Targets,” Appl. Opt. 21, 2390 (1983).
[CrossRef]

W. B. Grant, R. T. Menzies, “A Survey of Laser and Selected Optical Systems for Remote Measurement of Pollutant Gas Concentrations,” APCA J. 33, 187 (1983).

Hawley, J. G.

J. G. Hawley, L. D. Fletcher, G. F. Wallace, “Ground-Based Ultraviolet Differential Absorption Lidar (DIAL) System and Measurements,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer-Verlag, New York, 1983).

Igarashi, T.

Lehmann, F.

Lundquist, S.

Lundqvist, S.

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984).

Menzies, R. T.

W. B. Grant, R. T. Menzies, “A Survey of Laser and Selected Optical Systems for Remote Measurement of Pollutant Gas Concentrations,” APCA J. 33, 187 (1983).

Murray, E. R.

E. R. Murray, “Remote Measurement of Gases Using Discreetly Tunable Infrared Lasers,” Opt. Eng. 16, 284 (1977).
[CrossRef]

Olsson, B.

Persson, V.

Petheram, J. C.

J. C. Petheram, “Differential Backscatter from the Atmospheric Aerosol: The Implications for IR Differential Absorption Lidar,” Appl. Opt. 20, 394 (1981).
[CrossRef]

Rother, M.

W. Englisch, W. Wiesemann, J. Boscher, M. Rother, “Laser Remote Sensing Measurements of Atmospheric Species and Natural Target Reflectivities,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer-Verlag, New York, 1983).

Russell, P. B.

R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption.” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer-Verlag, New York, 1976).
[CrossRef]

Shumate, M. S.

Wallace, G. F.

J. G. Hawley, L. D. Fletcher, G. F. Wallace, “Ground-Based Ultraviolet Differential Absorption Lidar (DIAL) System and Measurements,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer-Verlag, New York, 1983).

Wiesemann, W.

W. Wiesemann, F. Lehmann, “Reliability of Airborne CO2 DIAL Measurements: Schemes for Testing Technical Performance and Reducing Interference from Differential Reflectance,” Appl. Opt. 24, 3481 (1985).
[CrossRef] [PubMed]

W. Englisch, W. Wiesemann, J. Boscher, M. Rother, “Laser Remote Sensing Measurements of Atmospheric Species and Natural Target Reflectivities,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer-Verlag, New York, 1983).

APCA J.

W. B. Grant, R. T. Menzies, “A Survey of Laser and Selected Optical Systems for Remote Measurement of Pollutant Gas Concentrations,” APCA J. 33, 187 (1983).

Appl. Opt.

Opt. Eng.

E. R. Murray, “Remote Measurement of Gases Using Discreetly Tunable Infrared Lasers,” Opt. Eng. 16, 284 (1977).
[CrossRef]

Other

K. Asai, “Airborne CO2 Laser Heterodyne Sensor for Monitoring Regional Ozone Distributions,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer-Verlag, New York, 1983).

J. G. Hawley, L. D. Fletcher, G. F. Wallace, “Ground-Based Ultraviolet Differential Absorption Lidar (DIAL) System and Measurements,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer-Verlag, New York, 1983).

W. Englisch, W. Wiesemann, J. Boscher, M. Rother, “Laser Remote Sensing Measurements of Atmospheric Species and Natural Target Reflectivities,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer-Verlag, New York, 1983).

R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984).

R. T. H. Collis, P. B. Russell, “Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption.” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer-Verlag, New York, 1976).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

SRI Queen Air aircraft used to support ALARM airborne lidar system.

Fig. 2
Fig. 2

Spectrum of ν3 band of SF6 at near-surface temperature and pressure conditions.

Fig. 3
Fig. 3

Map of site area for ALARM SF6 demonstration tests.

Fig. 4
Fig. 4

Column-content SF6 concentrations measured by ALARM 2.5 km downwind of source.

Fig. 5
Fig. 5

ALARM pulse-pair profiles, before, during, and after aircraft passage over the SF6 plume indicated by the column-content data presented in Fig. 4.

Fig. 6
Fig. 6

Fourier representations of ALARM pulse-pair lidar signatures (pulse-pair 39) with indicated number of Fourier terms.

Fig. 7
Fig. 7

ALARM-derived SF6 concentration for pulse-pair 39 and five-term Fourier representation of lidar signatures.

Fig. 8
Fig. 8

Contour map of vertical SF6 distributions (in ppb) as derived from ALARM observations 2.5 km downwind of a near-surface source (2 July 1985, 1923–1925 PDT).

Fig. 9
Fig. 9

Comparison of ALARM column-content SF6 concentration with vertically integrated ALARM range-resolved SF6 concentrations.

Tables (2)

Tables Icon

Table I ALARM Hardware Specifications

Tables Icon

Table II ALARM SF6 Demonstration Tests

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C d l = 1 2 Δ σ ( ln I v / P v I p / P p + ln γ p γ v ) ,
C ( R ) = 1 2 Δ σ d d r [ ln I v ( R ) I p ( R ) + ln β p ( R ) β v ( R ) ] ,
ln I v ( R ) I p ( R ) = K 4.34 [ S v ( R ) - S p ( R ) ] = 2 Δ σ C ( R ) d R ,
S ( j + 1 ) = A c ( 1 ) 2 + ( - 1 ) j A c ( N 2 + 1 ) 2 + k = 1 N 2 - 1 [ A c ( k + 1 ) cos ( 2 π j k N ) + A s ( k + 1 ) sin ( 2 π j k N ) ]
A c ( k + 1 ) = 2 N j = 0 N - 1 S ( j + 1 ) cos ( 2 π j k N ) A s ( k + 1 ) = 2 N j = 0 N - 1 S ( j + 1 ) sin ( 2 π j k N ) .

Metrics