Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Alferness, “Waveguide Electrooptic Modulators,” IEEE Trans. Microwave Theory Tech. MTT-30, 1121 (1982).
    [CrossRef]
  2. R. C. Alferness, S. K. Korotky, L. L. Buhl, M. D. Divino, “High-Speed, Low-Loss, Low Drive Power Travelling-Wave Optical Modulator for 1.32 μm,” Electron. Lett. 20, 354 (1984).
    [CrossRef]
  3. C. H. Bulmer, W. K. Burns, R. P. Moeller, “Linear Interferometric Waveguide Modulator for Electromagnetic-Field Detection,” Opt. Lett. 5, 176 (1980).
    [CrossRef] [PubMed]
  4. S. Y. Wang, K. W. Carey, “Front-Side Illuminated InP/GaInAs/InP p-i-n Photodiode with FWHM < 26 Picoseconds,” in Technical Digest, Forty-Third Annual Device Research Conference, Boulder, CO (1985), paper IIIA-8.
  5. S. Yamada, M. Minakata, “D.C. Drift Phenomena in LiNbO3 Optical Waveguide Devices,” Jpn. J. Appl. Phys. 20, 733 (1981).
    [CrossRef]

1984 (1)

R. C. Alferness, S. K. Korotky, L. L. Buhl, M. D. Divino, “High-Speed, Low-Loss, Low Drive Power Travelling-Wave Optical Modulator for 1.32 μm,” Electron. Lett. 20, 354 (1984).
[CrossRef]

1982 (1)

R. C. Alferness, “Waveguide Electrooptic Modulators,” IEEE Trans. Microwave Theory Tech. MTT-30, 1121 (1982).
[CrossRef]

1981 (1)

S. Yamada, M. Minakata, “D.C. Drift Phenomena in LiNbO3 Optical Waveguide Devices,” Jpn. J. Appl. Phys. 20, 733 (1981).
[CrossRef]

1980 (1)

Alferness, R. C.

R. C. Alferness, S. K. Korotky, L. L. Buhl, M. D. Divino, “High-Speed, Low-Loss, Low Drive Power Travelling-Wave Optical Modulator for 1.32 μm,” Electron. Lett. 20, 354 (1984).
[CrossRef]

R. C. Alferness, “Waveguide Electrooptic Modulators,” IEEE Trans. Microwave Theory Tech. MTT-30, 1121 (1982).
[CrossRef]

Buhl, L. L.

R. C. Alferness, S. K. Korotky, L. L. Buhl, M. D. Divino, “High-Speed, Low-Loss, Low Drive Power Travelling-Wave Optical Modulator for 1.32 μm,” Electron. Lett. 20, 354 (1984).
[CrossRef]

Bulmer, C. H.

Burns, W. K.

Carey, K. W.

S. Y. Wang, K. W. Carey, “Front-Side Illuminated InP/GaInAs/InP p-i-n Photodiode with FWHM < 26 Picoseconds,” in Technical Digest, Forty-Third Annual Device Research Conference, Boulder, CO (1985), paper IIIA-8.

Divino, M. D.

R. C. Alferness, S. K. Korotky, L. L. Buhl, M. D. Divino, “High-Speed, Low-Loss, Low Drive Power Travelling-Wave Optical Modulator for 1.32 μm,” Electron. Lett. 20, 354 (1984).
[CrossRef]

Korotky, S. K.

R. C. Alferness, S. K. Korotky, L. L. Buhl, M. D. Divino, “High-Speed, Low-Loss, Low Drive Power Travelling-Wave Optical Modulator for 1.32 μm,” Electron. Lett. 20, 354 (1984).
[CrossRef]

Minakata, M.

S. Yamada, M. Minakata, “D.C. Drift Phenomena in LiNbO3 Optical Waveguide Devices,” Jpn. J. Appl. Phys. 20, 733 (1981).
[CrossRef]

Moeller, R. P.

Wang, S. Y.

S. Y. Wang, K. W. Carey, “Front-Side Illuminated InP/GaInAs/InP p-i-n Photodiode with FWHM < 26 Picoseconds,” in Technical Digest, Forty-Third Annual Device Research Conference, Boulder, CO (1985), paper IIIA-8.

Yamada, S.

S. Yamada, M. Minakata, “D.C. Drift Phenomena in LiNbO3 Optical Waveguide Devices,” Jpn. J. Appl. Phys. 20, 733 (1981).
[CrossRef]

Electron. Lett. (1)

R. C. Alferness, S. K. Korotky, L. L. Buhl, M. D. Divino, “High-Speed, Low-Loss, Low Drive Power Travelling-Wave Optical Modulator for 1.32 μm,” Electron. Lett. 20, 354 (1984).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

R. C. Alferness, “Waveguide Electrooptic Modulators,” IEEE Trans. Microwave Theory Tech. MTT-30, 1121 (1982).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Yamada, M. Minakata, “D.C. Drift Phenomena in LiNbO3 Optical Waveguide Devices,” Jpn. J. Appl. Phys. 20, 733 (1981).
[CrossRef]

Opt. Lett. (1)

Other (1)

S. Y. Wang, K. W. Carey, “Front-Side Illuminated InP/GaInAs/InP p-i-n Photodiode with FWHM < 26 Picoseconds,” in Technical Digest, Forty-Third Annual Device Research Conference, Boulder, CO (1985), paper IIIA-8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the MZ interferometer (a) and cross section (b). x and z refer to the crystal directions in LiNbO3.

Fig. 2
Fig. 2

Transfer function of a typical device. Upper trace is drive voltage. Lower trace is light output. The switching voltage is 3.5 V.

Fig. 3
Fig. 3

Light intensity modulation vs frequency under small signal modulation conditions. The smooth curve is the calculated response of the device alone (no packaging effects).

Metrics