Abstract

The determination of an accurate mean sea surface reference is an essential step in any system seeking to provide accurate measurements of sea depth. Algorithms developed to achieve this for the laser-based airborne depth sounder wrelads are presented, and their performance under extensive testing of that system is assessed. They are shown to generate successfully an accurate mean sea surface reference under a wide range of conditions that might be expected operationally. Use of this analysis as a diagnostic tool in monitoring other aspects of the performance of the depth sounding hardware is also discussed.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. Hickman, J. E. Hogg, “Application of an Airborne Pulsed Laser for Near Shore Bathymetric Measurements,” Remote Sensing Environ. 1, 47 (1969).
    [CrossRef]
  2. H. H. Kim, P. O. Cervenka, C. B. Lankford, “Development of an Airborne Laser Bathymeter,” NASA Tech. Note TND-8079 (Oct.1975).
  3. J. E. Clegg, M. F. Penny, “Depth Sounding from the Air by Laser Beam,” J. Navigation 31, (1978).
    [CrossRef]
  4. F. E. Hoge, R. N. Swift, E. B. Frederick, “Water Depth Measurement using an Airborne Pulsed Neon Laser System,” Appl. Opt. 19, 871 (1980).
    [CrossRef] [PubMed]
  5. G. C. Guenther, R. W. L. Thomas, “Effects of Propagation-Induced Pulse Stretching in Airborne Laser Hydrography,” Proc. Soc. Photo-Opt. Instrum. Eng.Ocean Optics 7, 287 (1984).
    [CrossRef]
  6. Moniteq Ltd., “Determination of Parameters of Significance for Accuracy Optimization of a Scanning Lidar Bathymeter,” Final Report, Canadian Hydrographic Service Contract, Concord, Ontario, Canada (1983).
  7. M. F. Penny et al., “Airborne Laser Hydrography in AustraliaAppl. Opt. 25, 2046 (1986).
    [CrossRef] [PubMed]
  8. D. M. Phillips, “Effects of the Wavenumber Spectrum of a Sea Surface on Laser Beam Reflection,” Aust. J. Phys. 32, (1979).
  9. A. H. Jazwinski, Stochastic Processes and Filtering Theory (Academic, New York, 1970).
  10. B. Billard, “Faster Kalman Trajectory Smoothing,” AIAA J. 15, 1800 (1977).
    [CrossRef]
  11. B. Billard, P. J. Wilsen, “Sea Surface and Depth Detection in the WRELADS Airborne Depth Sounder,” Appl. Opt. 25, 2059 (1986).
    [CrossRef] [PubMed]

1986

1984

G. C. Guenther, R. W. L. Thomas, “Effects of Propagation-Induced Pulse Stretching in Airborne Laser Hydrography,” Proc. Soc. Photo-Opt. Instrum. Eng.Ocean Optics 7, 287 (1984).
[CrossRef]

1980

1979

D. M. Phillips, “Effects of the Wavenumber Spectrum of a Sea Surface on Laser Beam Reflection,” Aust. J. Phys. 32, (1979).

1978

J. E. Clegg, M. F. Penny, “Depth Sounding from the Air by Laser Beam,” J. Navigation 31, (1978).
[CrossRef]

1977

B. Billard, “Faster Kalman Trajectory Smoothing,” AIAA J. 15, 1800 (1977).
[CrossRef]

1975

H. H. Kim, P. O. Cervenka, C. B. Lankford, “Development of an Airborne Laser Bathymeter,” NASA Tech. Note TND-8079 (Oct.1975).

1969

G. D. Hickman, J. E. Hogg, “Application of an Airborne Pulsed Laser for Near Shore Bathymetric Measurements,” Remote Sensing Environ. 1, 47 (1969).
[CrossRef]

Billard, B.

Cervenka, P. O.

H. H. Kim, P. O. Cervenka, C. B. Lankford, “Development of an Airborne Laser Bathymeter,” NASA Tech. Note TND-8079 (Oct.1975).

Clegg, J. E.

J. E. Clegg, M. F. Penny, “Depth Sounding from the Air by Laser Beam,” J. Navigation 31, (1978).
[CrossRef]

Frederick, E. B.

Guenther, G. C.

G. C. Guenther, R. W. L. Thomas, “Effects of Propagation-Induced Pulse Stretching in Airborne Laser Hydrography,” Proc. Soc. Photo-Opt. Instrum. Eng.Ocean Optics 7, 287 (1984).
[CrossRef]

Hickman, G. D.

G. D. Hickman, J. E. Hogg, “Application of an Airborne Pulsed Laser for Near Shore Bathymetric Measurements,” Remote Sensing Environ. 1, 47 (1969).
[CrossRef]

Hoge, F. E.

Hogg, J. E.

G. D. Hickman, J. E. Hogg, “Application of an Airborne Pulsed Laser for Near Shore Bathymetric Measurements,” Remote Sensing Environ. 1, 47 (1969).
[CrossRef]

Jazwinski, A. H.

A. H. Jazwinski, Stochastic Processes and Filtering Theory (Academic, New York, 1970).

Kim, H. H.

H. H. Kim, P. O. Cervenka, C. B. Lankford, “Development of an Airborne Laser Bathymeter,” NASA Tech. Note TND-8079 (Oct.1975).

Lankford, C. B.

H. H. Kim, P. O. Cervenka, C. B. Lankford, “Development of an Airborne Laser Bathymeter,” NASA Tech. Note TND-8079 (Oct.1975).

Penny, M. F.

M. F. Penny et al., “Airborne Laser Hydrography in AustraliaAppl. Opt. 25, 2046 (1986).
[CrossRef] [PubMed]

J. E. Clegg, M. F. Penny, “Depth Sounding from the Air by Laser Beam,” J. Navigation 31, (1978).
[CrossRef]

Phillips, D. M.

D. M. Phillips, “Effects of the Wavenumber Spectrum of a Sea Surface on Laser Beam Reflection,” Aust. J. Phys. 32, (1979).

Swift, R. N.

Thomas, R. W. L.

G. C. Guenther, R. W. L. Thomas, “Effects of Propagation-Induced Pulse Stretching in Airborne Laser Hydrography,” Proc. Soc. Photo-Opt. Instrum. Eng.Ocean Optics 7, 287 (1984).
[CrossRef]

Wilsen, P. J.

AIAA J.

B. Billard, “Faster Kalman Trajectory Smoothing,” AIAA J. 15, 1800 (1977).
[CrossRef]

Appl. Opt.

Aust. J. Phys.

D. M. Phillips, “Effects of the Wavenumber Spectrum of a Sea Surface on Laser Beam Reflection,” Aust. J. Phys. 32, (1979).

J. Navigation

J. E. Clegg, M. F. Penny, “Depth Sounding from the Air by Laser Beam,” J. Navigation 31, (1978).
[CrossRef]

NASA Tech. Note TND-8079

H. H. Kim, P. O. Cervenka, C. B. Lankford, “Development of an Airborne Laser Bathymeter,” NASA Tech. Note TND-8079 (Oct.1975).

Ocean Optics

G. C. Guenther, R. W. L. Thomas, “Effects of Propagation-Induced Pulse Stretching in Airborne Laser Hydrography,” Proc. Soc. Photo-Opt. Instrum. Eng.Ocean Optics 7, 287 (1984).
[CrossRef]

Remote Sensing Environ.

G. D. Hickman, J. E. Hogg, “Application of an Airborne Pulsed Laser for Near Shore Bathymetric Measurements,” Remote Sensing Environ. 1, 47 (1969).
[CrossRef]

Other

Moniteq Ltd., “Determination of Parameters of Significance for Accuracy Optimization of a Scanning Lidar Bathymeter,” Final Report, Canadian Hydrographic Service Contract, Concord, Ontario, Canada (1983).

A. H. Jazwinski, Stochastic Processes and Filtering Theory (Academic, New York, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Operating scenario of WRELADS II laser airborne depth sounder.

Fig. 2
Fig. 2

Received waveforms from twelve green pulses across a single sweep.

Fig. 3
Fig. 3

Scanning beam geometry.

Fig. 4
Fig. 4

Infrared reference bias b over 34 km.

Fig. 5
Fig. 5

Infrared reference bias b fine scale. The section is taken from the data included in Fig. 4 starting near the 22-km mark.

Fig. 6
Fig. 6

Platform tilt (Δϕ) over 34 km for the same section of data that is the subject of Fig. 4.

Fig. 7
Fig. 7

Depth profile over 35 km for the same section of data used in Figs. 4 and 6.

Fig. 8
Fig. 8

Statistics of surface reflection height residuals for five 28-s sections of data from different times and locations during the same flight. They show (a) the number of detected surface reflections at each spot; (b) the mean of the residuals at each spot; and (c) the standard deviation of the residuals about their mean. Spot 1 is at the starboard extreme of the cycle and spot 12 at the port extreme. Spot 7 is closest to nadir.

Fig. 9
Fig. 9

Statistics of surface reflection height residuals for four 28-s sections of data from a flight when the sea surface was glassy and the algorithm for detection of surface reflections was unable to discriminate against the steeply rising leading edge of a subsurface backscatter envelope. The layout of the data is otherwise as for Fig. 7.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

y = r sec ϕ + b sec ϕ + measurement error .
y i = H ϕ i Δ ϕ + b + μ i .
M k = ( H ϕ 1 H ϕ n 1 1 ) .
Q k = E ( ν k ν k T ) = ( q 1 0 0 q 2 ) ,
X k / k - 1 = X k - 1 / k - 1 , P k / k - 1 = P k - 1 / k - 1 + Q k , P k / k - 1 = P k / k - 1 - 1 + Γ k , Γ k = M k T R k - 1 M k , δ y k = y k - y ( X k / k - 1 ) , and X k / k = X k / k - 1 + P k / k M k T R k - 1 δ y k . }

Metrics