Abstract

Some predictions of a phenomenological theory describing the behavior of photochromic glasses were tested by photoacoustic measurements. The induced steady-state absorption wasinvestigated under the influence of strong optical bleaching. A depth profile of the induced steady-state absorption coefficient was measured by varying the glass thickness and described theoretically. Optical measurements were related to simultaneously taken photoacoustical measurements.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Rosencwaig, A. Gersho, “Theory of the Photoacoustic Effect with Solids,” J. Appl. Phys. 47, 64 (1976).
    [CrossRef]
  2. G. Gliemeroth, “Fotoakustische Messungen an fototropen Gldsein,” Glastech. Ber. 56, 313 (1983).
  3. G. P. Smith, “Photochromic Glasses: Properties and Applications,” J. Mater. Sci. 2, 139 (1967).
    [CrossRef]
  4. R. J. Araujo, “Kinetics of Bleaching of Photochromic Glass,” Appl. Opt. 7, 781 (1968).
    [CrossRef] [PubMed]
  5. R. J. Araujo, N. F. Borelli, “Diffusion-Model Interpretation of the Darkening and Fading of Photochromic Glasses,” J. Appl. Phys. 47, 1370 (1976).
    [CrossRef]
  6. R. J. Araujo, “Photochromic Glass,” in Treatise on Materials Science, Vol. 12, M. Tomozawa, R. H. Doremus, Eds. (Academic, New York, 1977).
  7. R. J. Araujo, N. F. Borrelli, D. A. Nolan, “The Influence of Electron-Hole Separation on the Recombination Probability in Photochromic Glasses,” Philos. Mag. B 40, 279 (1979).
    [CrossRef]
  8. R. J. Araujo, N. F. Borrelli, D. A. Nolan, “Further Aspects of the Influence of Electron-Hole Separation on the Recombination Probability in Photochromic Glasses,” Philos. Mag. B 44, 453 (1981).
    [CrossRef]
  9. T. Flohr, diploma thesis, Erlanger1985.
  10. M. Afromowitz, P-S. Yeh, S. Yee, “Photoacoustic Measurements of Spatially Varying Optical Absorption in Solids: A Theroetical Treatment,” J. Appl. Phys. 48, 209 (1977).
    [CrossRef]

1983 (1)

G. Gliemeroth, “Fotoakustische Messungen an fototropen Gldsein,” Glastech. Ber. 56, 313 (1983).

1981 (1)

R. J. Araujo, N. F. Borrelli, D. A. Nolan, “Further Aspects of the Influence of Electron-Hole Separation on the Recombination Probability in Photochromic Glasses,” Philos. Mag. B 44, 453 (1981).
[CrossRef]

1979 (1)

R. J. Araujo, N. F. Borrelli, D. A. Nolan, “The Influence of Electron-Hole Separation on the Recombination Probability in Photochromic Glasses,” Philos. Mag. B 40, 279 (1979).
[CrossRef]

1977 (1)

M. Afromowitz, P-S. Yeh, S. Yee, “Photoacoustic Measurements of Spatially Varying Optical Absorption in Solids: A Theroetical Treatment,” J. Appl. Phys. 48, 209 (1977).
[CrossRef]

1976 (2)

R. J. Araujo, N. F. Borelli, “Diffusion-Model Interpretation of the Darkening and Fading of Photochromic Glasses,” J. Appl. Phys. 47, 1370 (1976).
[CrossRef]

A. Rosencwaig, A. Gersho, “Theory of the Photoacoustic Effect with Solids,” J. Appl. Phys. 47, 64 (1976).
[CrossRef]

1968 (1)

1967 (1)

G. P. Smith, “Photochromic Glasses: Properties and Applications,” J. Mater. Sci. 2, 139 (1967).
[CrossRef]

Afromowitz, M.

M. Afromowitz, P-S. Yeh, S. Yee, “Photoacoustic Measurements of Spatially Varying Optical Absorption in Solids: A Theroetical Treatment,” J. Appl. Phys. 48, 209 (1977).
[CrossRef]

Araujo, R. J.

R. J. Araujo, N. F. Borrelli, D. A. Nolan, “Further Aspects of the Influence of Electron-Hole Separation on the Recombination Probability in Photochromic Glasses,” Philos. Mag. B 44, 453 (1981).
[CrossRef]

R. J. Araujo, N. F. Borrelli, D. A. Nolan, “The Influence of Electron-Hole Separation on the Recombination Probability in Photochromic Glasses,” Philos. Mag. B 40, 279 (1979).
[CrossRef]

R. J. Araujo, N. F. Borelli, “Diffusion-Model Interpretation of the Darkening and Fading of Photochromic Glasses,” J. Appl. Phys. 47, 1370 (1976).
[CrossRef]

R. J. Araujo, “Kinetics of Bleaching of Photochromic Glass,” Appl. Opt. 7, 781 (1968).
[CrossRef] [PubMed]

R. J. Araujo, “Photochromic Glass,” in Treatise on Materials Science, Vol. 12, M. Tomozawa, R. H. Doremus, Eds. (Academic, New York, 1977).

Borelli, N. F.

R. J. Araujo, N. F. Borelli, “Diffusion-Model Interpretation of the Darkening and Fading of Photochromic Glasses,” J. Appl. Phys. 47, 1370 (1976).
[CrossRef]

Borrelli, N. F.

R. J. Araujo, N. F. Borrelli, D. A. Nolan, “Further Aspects of the Influence of Electron-Hole Separation on the Recombination Probability in Photochromic Glasses,” Philos. Mag. B 44, 453 (1981).
[CrossRef]

R. J. Araujo, N. F. Borrelli, D. A. Nolan, “The Influence of Electron-Hole Separation on the Recombination Probability in Photochromic Glasses,” Philos. Mag. B 40, 279 (1979).
[CrossRef]

Flohr, T.

T. Flohr, diploma thesis, Erlanger1985.

Gersho, A.

A. Rosencwaig, A. Gersho, “Theory of the Photoacoustic Effect with Solids,” J. Appl. Phys. 47, 64 (1976).
[CrossRef]

Gliemeroth, G.

G. Gliemeroth, “Fotoakustische Messungen an fototropen Gldsein,” Glastech. Ber. 56, 313 (1983).

Nolan, D. A.

R. J. Araujo, N. F. Borrelli, D. A. Nolan, “Further Aspects of the Influence of Electron-Hole Separation on the Recombination Probability in Photochromic Glasses,” Philos. Mag. B 44, 453 (1981).
[CrossRef]

R. J. Araujo, N. F. Borrelli, D. A. Nolan, “The Influence of Electron-Hole Separation on the Recombination Probability in Photochromic Glasses,” Philos. Mag. B 40, 279 (1979).
[CrossRef]

Rosencwaig, A.

A. Rosencwaig, A. Gersho, “Theory of the Photoacoustic Effect with Solids,” J. Appl. Phys. 47, 64 (1976).
[CrossRef]

Smith, G. P.

G. P. Smith, “Photochromic Glasses: Properties and Applications,” J. Mater. Sci. 2, 139 (1967).
[CrossRef]

Yee, S.

M. Afromowitz, P-S. Yeh, S. Yee, “Photoacoustic Measurements of Spatially Varying Optical Absorption in Solids: A Theroetical Treatment,” J. Appl. Phys. 48, 209 (1977).
[CrossRef]

Yeh, P-S.

M. Afromowitz, P-S. Yeh, S. Yee, “Photoacoustic Measurements of Spatially Varying Optical Absorption in Solids: A Theroetical Treatment,” J. Appl. Phys. 48, 209 (1977).
[CrossRef]

Appl. Opt. (1)

Glastech. Ber. (1)

G. Gliemeroth, “Fotoakustische Messungen an fototropen Gldsein,” Glastech. Ber. 56, 313 (1983).

J. Appl. Phys. (3)

R. J. Araujo, N. F. Borelli, “Diffusion-Model Interpretation of the Darkening and Fading of Photochromic Glasses,” J. Appl. Phys. 47, 1370 (1976).
[CrossRef]

A. Rosencwaig, A. Gersho, “Theory of the Photoacoustic Effect with Solids,” J. Appl. Phys. 47, 64 (1976).
[CrossRef]

M. Afromowitz, P-S. Yeh, S. Yee, “Photoacoustic Measurements of Spatially Varying Optical Absorption in Solids: A Theroetical Treatment,” J. Appl. Phys. 48, 209 (1977).
[CrossRef]

J. Mater. Sci. (1)

G. P. Smith, “Photochromic Glasses: Properties and Applications,” J. Mater. Sci. 2, 139 (1967).
[CrossRef]

Philos. Mag. B (2)

R. J. Araujo, N. F. Borrelli, D. A. Nolan, “The Influence of Electron-Hole Separation on the Recombination Probability in Photochromic Glasses,” Philos. Mag. B 40, 279 (1979).
[CrossRef]

R. J. Araujo, N. F. Borrelli, D. A. Nolan, “Further Aspects of the Influence of Electron-Hole Separation on the Recombination Probability in Photochromic Glasses,” Philos. Mag. B 44, 453 (1981).
[CrossRef]

Other (2)

T. Flohr, diploma thesis, Erlanger1985.

R. J. Araujo, “Photochromic Glass,” in Treatise on Materials Science, Vol. 12, M. Tomozawa, R. H. Doremus, Eds. (Academic, New York, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic plot of the experimental setup.

Fig. 2
Fig. 2

Schematic arrangement of exciting and measuring beams for photoacoustic studies of photochromic glasses.

Fig. 3
Fig. 3

Photoacoustic signal as a measure of the induced stationary-state absorption coefficient k(0,IUV) under the influence of strong optical bleaching as a function of the exciting UV intensity.

Fig. 4
Fig. 4

Schematic arrangement of exciting and measuring beams for photoacoustic studies of photochromic glasses.

Fig. 5
Fig. 5

Photoacoustic signal after reaching stationary-state absorption as a function of sample thickness for various UV exciting intensities (λuv = 366 nm).

Fig. 6
Fig. 6

Photoacoustic signal as a function of the sample transmission for darkening and for bleaching with a 0.2-mm sample thickness.

Fig. 7
Fig. 7

Photoacoustic signal as a function of the sample transmission for darkening and for bleaching with a 0.5-mm sample thickness.

Fig. 8
Fig. 8

Photoacoustic signal as a function of the sample transmission for darkening and for bleaching with a 2.0-mm sample thickness.

Fig. 9
Fig. 9

Curves for darkening from Figs. 6 to 8.

Fig. 10
Fig. 10

Schematic plot to illustrate the behavior of the photoacoustic signal shown in Figs. 68.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

μ = 2 k ρ c ω
Ag + + Cl - h v Ag 0 + Cl 0 , Ag + + Cu + h v Ag 0 + Cu 2 + .
d k ( x , t ) d t = g · [ k max - k ( x , t ) ] · I U V ( x ) - r · k 2 ( x , t ) - d · I red ( x ) · k ( x , t ) .
k stat [ x = 0 , I UV ( 0 ) ] = k max · I UV ( 0 ) I UV ( 0 ) + d g I red ( 0 ) .
I UV ( d ) = I UV ( 0 ) exp [ - ( k UV + k stat , d ) · d ] ,
k stat ( d ) = k max · I UV ( d ) I UV ( d ) + d g I red ( 0 ) .

Metrics