Abstract

The flux flow equation of Burkhard and Shealy is a simplified equation which can be used to evaluate the energy flux density at the image plane for a general optical system. Since the flux flow equation is based on the differential geometry of the wave front passing through the system, the energy flux density at the image plane can be computed by tracing a single ray through the system and using the flux flow equation. This technique has been used to calculate the meridional section of the point spread function of Wolter I x-ray telescopes and thin-film multilayered optics. Results, which have been obtained by the flux flow ray tracing method for the point spread function of several Wolter I x-ray telescopes and hybrid x-ray telescopes using convexed thin-film multilayered optics located near the primary focus, are compared with the rms blur circle results and the point spread function results obtained by conventional ray tracing techniques.

© 1986 Optical Society of America

Full Article  |  PDF Article
Related Articles
Optical Design of a Glancing Incidence X-ray Telescope

J. D. Mangus and J. H. Underwood
Appl. Opt. 8(1) 95-102 (1969)

Design Parameters of Paraboloid-Hyperboloid Telescopes for X-ray Astronomy

L. P. VanSpeybroeck and R. C. Chase
Appl. Opt. 11(2) 440-445 (1972)

Imaging characteristics of a conical primary, aspheric secondary x-ray telescope

Donald G. Burkhard, David L. Shealy, and George L. Strobel
Appl. Opt. 21(20) 3713-3718 (1982)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (26)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription