Abstract

The temperature characteristics of Faraday rotator material Y3xGd3(1−x)Fe5O12 are discussed. The material with YIG molar fraction x between 0.57 and 0.7 has a small temperature coefficient of the Faraday rotation and is suitable for isolators with temperature-stable isolation. The extinction ratio of the Faraday rotator can be minimized by selecting an appropriate polarization direction of light incident on it. This polarization direction should also be selected by taking the temperature dependence into account. Isolators using the material as a rotator hold isolation to >40 dB throughout the temperature range from 0 to 50°C.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Iwamura, S. Hayashi, H. Iwasaki, “A Compact Optical Isolator Using a Y3Fe5O12 Crystal for Near Infra-Red Radiation,” Opt. Quantum Electron. 10, 393 (1978).
    [CrossRef]
  2. K. Kobayashi, M. Seki, “Microoptic Grating Multiplexer and Isolators for Fiber-Optic Communications,” IEEE J. Quantum. Electron. QE-16, 11 (1980).
    [CrossRef]
  3. R. W. Cooper, W. A. Crossley, J. L. Page, R. F. Pearson, “Faraday Rotation in YIG and TbIG,” J. Appl. Phys. 39, 565 (1968).
    [CrossRef]
  4. E. V. Berdennikova, R. V. Pisarev, “Sublattice Contributions to the Faraday Effect in Rare Earth Iron Garnets,” Sov. Phys. Solid State 18, 45 (1976).
  5. W. A. Crossley, R. W. Cooper, J. L. Page, “Faraday Rotation in Rare Earth Iron Garnets,” Phys. Rev. 181, 896 (1969).
    [CrossRef]
  6. R. V. Pisarev, I. G. Sinii, N. N. Kolpakova, Yu. M. Yakovlev, “Magnetic Birefringence of Light in Iron Garnets,” Sov. Phys. JETP 33, 1175 (1971).
  7. W. J. Tabor, F. S. Chen, “Electromagnetic Propagation Through Materials Possessing both Faraday Rotation and Birefringence: Experiments with Ytterbium Orthoferrite,” J. Appl. Phys. 40, 2760 (1969).
    [CrossRef]
  8. R. T. Lynch, J. F. Dillon, L. G. Van Uitert, “Stress Birefringence in Ferrimagnetic Garnets,” J. Appl. Phys. 44, 225 (1973).
    [CrossRef]

1980 (1)

K. Kobayashi, M. Seki, “Microoptic Grating Multiplexer and Isolators for Fiber-Optic Communications,” IEEE J. Quantum. Electron. QE-16, 11 (1980).
[CrossRef]

1978 (1)

H. Iwamura, S. Hayashi, H. Iwasaki, “A Compact Optical Isolator Using a Y3Fe5O12 Crystal for Near Infra-Red Radiation,” Opt. Quantum Electron. 10, 393 (1978).
[CrossRef]

1976 (1)

E. V. Berdennikova, R. V. Pisarev, “Sublattice Contributions to the Faraday Effect in Rare Earth Iron Garnets,” Sov. Phys. Solid State 18, 45 (1976).

1973 (1)

R. T. Lynch, J. F. Dillon, L. G. Van Uitert, “Stress Birefringence in Ferrimagnetic Garnets,” J. Appl. Phys. 44, 225 (1973).
[CrossRef]

1971 (1)

R. V. Pisarev, I. G. Sinii, N. N. Kolpakova, Yu. M. Yakovlev, “Magnetic Birefringence of Light in Iron Garnets,” Sov. Phys. JETP 33, 1175 (1971).

1969 (2)

W. J. Tabor, F. S. Chen, “Electromagnetic Propagation Through Materials Possessing both Faraday Rotation and Birefringence: Experiments with Ytterbium Orthoferrite,” J. Appl. Phys. 40, 2760 (1969).
[CrossRef]

W. A. Crossley, R. W. Cooper, J. L. Page, “Faraday Rotation in Rare Earth Iron Garnets,” Phys. Rev. 181, 896 (1969).
[CrossRef]

1968 (1)

R. W. Cooper, W. A. Crossley, J. L. Page, R. F. Pearson, “Faraday Rotation in YIG and TbIG,” J. Appl. Phys. 39, 565 (1968).
[CrossRef]

Berdennikova, E. V.

E. V. Berdennikova, R. V. Pisarev, “Sublattice Contributions to the Faraday Effect in Rare Earth Iron Garnets,” Sov. Phys. Solid State 18, 45 (1976).

Chen, F. S.

W. J. Tabor, F. S. Chen, “Electromagnetic Propagation Through Materials Possessing both Faraday Rotation and Birefringence: Experiments with Ytterbium Orthoferrite,” J. Appl. Phys. 40, 2760 (1969).
[CrossRef]

Cooper, R. W.

W. A. Crossley, R. W. Cooper, J. L. Page, “Faraday Rotation in Rare Earth Iron Garnets,” Phys. Rev. 181, 896 (1969).
[CrossRef]

R. W. Cooper, W. A. Crossley, J. L. Page, R. F. Pearson, “Faraday Rotation in YIG and TbIG,” J. Appl. Phys. 39, 565 (1968).
[CrossRef]

Crossley, W. A.

W. A. Crossley, R. W. Cooper, J. L. Page, “Faraday Rotation in Rare Earth Iron Garnets,” Phys. Rev. 181, 896 (1969).
[CrossRef]

R. W. Cooper, W. A. Crossley, J. L. Page, R. F. Pearson, “Faraday Rotation in YIG and TbIG,” J. Appl. Phys. 39, 565 (1968).
[CrossRef]

Dillon, J. F.

R. T. Lynch, J. F. Dillon, L. G. Van Uitert, “Stress Birefringence in Ferrimagnetic Garnets,” J. Appl. Phys. 44, 225 (1973).
[CrossRef]

Hayashi, S.

H. Iwamura, S. Hayashi, H. Iwasaki, “A Compact Optical Isolator Using a Y3Fe5O12 Crystal for Near Infra-Red Radiation,” Opt. Quantum Electron. 10, 393 (1978).
[CrossRef]

Iwamura, H.

H. Iwamura, S. Hayashi, H. Iwasaki, “A Compact Optical Isolator Using a Y3Fe5O12 Crystal for Near Infra-Red Radiation,” Opt. Quantum Electron. 10, 393 (1978).
[CrossRef]

Iwasaki, H.

H. Iwamura, S. Hayashi, H. Iwasaki, “A Compact Optical Isolator Using a Y3Fe5O12 Crystal for Near Infra-Red Radiation,” Opt. Quantum Electron. 10, 393 (1978).
[CrossRef]

Kobayashi, K.

K. Kobayashi, M. Seki, “Microoptic Grating Multiplexer and Isolators for Fiber-Optic Communications,” IEEE J. Quantum. Electron. QE-16, 11 (1980).
[CrossRef]

Kolpakova, N. N.

R. V. Pisarev, I. G. Sinii, N. N. Kolpakova, Yu. M. Yakovlev, “Magnetic Birefringence of Light in Iron Garnets,” Sov. Phys. JETP 33, 1175 (1971).

Lynch, R. T.

R. T. Lynch, J. F. Dillon, L. G. Van Uitert, “Stress Birefringence in Ferrimagnetic Garnets,” J. Appl. Phys. 44, 225 (1973).
[CrossRef]

Page, J. L.

W. A. Crossley, R. W. Cooper, J. L. Page, “Faraday Rotation in Rare Earth Iron Garnets,” Phys. Rev. 181, 896 (1969).
[CrossRef]

R. W. Cooper, W. A. Crossley, J. L. Page, R. F. Pearson, “Faraday Rotation in YIG and TbIG,” J. Appl. Phys. 39, 565 (1968).
[CrossRef]

Pearson, R. F.

R. W. Cooper, W. A. Crossley, J. L. Page, R. F. Pearson, “Faraday Rotation in YIG and TbIG,” J. Appl. Phys. 39, 565 (1968).
[CrossRef]

Pisarev, R. V.

E. V. Berdennikova, R. V. Pisarev, “Sublattice Contributions to the Faraday Effect in Rare Earth Iron Garnets,” Sov. Phys. Solid State 18, 45 (1976).

R. V. Pisarev, I. G. Sinii, N. N. Kolpakova, Yu. M. Yakovlev, “Magnetic Birefringence of Light in Iron Garnets,” Sov. Phys. JETP 33, 1175 (1971).

Seki, M.

K. Kobayashi, M. Seki, “Microoptic Grating Multiplexer and Isolators for Fiber-Optic Communications,” IEEE J. Quantum. Electron. QE-16, 11 (1980).
[CrossRef]

Sinii, I. G.

R. V. Pisarev, I. G. Sinii, N. N. Kolpakova, Yu. M. Yakovlev, “Magnetic Birefringence of Light in Iron Garnets,” Sov. Phys. JETP 33, 1175 (1971).

Tabor, W. J.

W. J. Tabor, F. S. Chen, “Electromagnetic Propagation Through Materials Possessing both Faraday Rotation and Birefringence: Experiments with Ytterbium Orthoferrite,” J. Appl. Phys. 40, 2760 (1969).
[CrossRef]

Van Uitert, L. G.

R. T. Lynch, J. F. Dillon, L. G. Van Uitert, “Stress Birefringence in Ferrimagnetic Garnets,” J. Appl. Phys. 44, 225 (1973).
[CrossRef]

Yakovlev, Yu. M.

R. V. Pisarev, I. G. Sinii, N. N. Kolpakova, Yu. M. Yakovlev, “Magnetic Birefringence of Light in Iron Garnets,” Sov. Phys. JETP 33, 1175 (1971).

IEEE J. Quantum. Electron. (1)

K. Kobayashi, M. Seki, “Microoptic Grating Multiplexer and Isolators for Fiber-Optic Communications,” IEEE J. Quantum. Electron. QE-16, 11 (1980).
[CrossRef]

J. Appl. Phys. (3)

R. W. Cooper, W. A. Crossley, J. L. Page, R. F. Pearson, “Faraday Rotation in YIG and TbIG,” J. Appl. Phys. 39, 565 (1968).
[CrossRef]

W. J. Tabor, F. S. Chen, “Electromagnetic Propagation Through Materials Possessing both Faraday Rotation and Birefringence: Experiments with Ytterbium Orthoferrite,” J. Appl. Phys. 40, 2760 (1969).
[CrossRef]

R. T. Lynch, J. F. Dillon, L. G. Van Uitert, “Stress Birefringence in Ferrimagnetic Garnets,” J. Appl. Phys. 44, 225 (1973).
[CrossRef]

Opt. Quantum Electron. (1)

H. Iwamura, S. Hayashi, H. Iwasaki, “A Compact Optical Isolator Using a Y3Fe5O12 Crystal for Near Infra-Red Radiation,” Opt. Quantum Electron. 10, 393 (1978).
[CrossRef]

Phys. Rev. (1)

W. A. Crossley, R. W. Cooper, J. L. Page, “Faraday Rotation in Rare Earth Iron Garnets,” Phys. Rev. 181, 896 (1969).
[CrossRef]

Sov. Phys. JETP (1)

R. V. Pisarev, I. G. Sinii, N. N. Kolpakova, Yu. M. Yakovlev, “Magnetic Birefringence of Light in Iron Garnets,” Sov. Phys. JETP 33, 1175 (1971).

Sov. Phys. Solid State (1)

E. V. Berdennikova, R. V. Pisarev, “Sublattice Contributions to the Faraday Effect in Rare Earth Iron Garnets,” Sov. Phys. Solid State 18, 45 (1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Temperature dependence of the Faraday rotation of mixed crystals Y3 x Gd3(1– x )Fe5O12 at optical wavelengths: (a) 1.55 μm, (b) 1.28 μm, and (c) 1.21 μm. Faraday rotation angles are normalized so that they are 45° at their maximum values or 25°C. Mixed crystals possess a Faraday rotation temperature coefficient much smaller than YIG.

Fig. 2
Fig. 2

Dependence of the temperature at which the Faraday rotation temperature coefficient becomes zero at the molar fraction of YIG. The dependence of temperature on wavelength is not monotonic. The temperatures at 1.28 μm are higher than those at 1.55 μm.

Fig. 3
Fig. 3

Faraday rotation at 25°C as a function of the molar fraction of YIG. The rotations increase monotonically as the molar fraction increases for the wavelengths shown.

Fig. 4
Fig. 4

Dependence of the rotator extinction ratio on the polarization direction of light incident on the rotator. It was measured when k//M//[111]. As the rotator temperature changes, the polarization direction minimizing the extinction ratio changes. Therefore, the isolation may degrade faster than expected from the temperature dependence of the Faraday rotation, even if the polarization direction of incident light is set to minimize the extinction ratio at a certain temperature.

Fig. 5
Fig. 5

Rotator extinction ratio as a function of applied magnetic fields. It was measured when k/M//[111]. The extinction ratio decreases as a whole as the applied fields are increased. At the same time, the polarization direction minimizing the extinction ratio shifts gradually. This phenomenon reminds us of the relationship between the dependence of the extinction ratio on the polarization direction and the magnetic linear birefringence.

Fig. 6
Fig. 6

Change of polarization direction minimizing the extinction ratio by positions on the rotator. It was measured when k//M//[111]. The direction of the long solid line indicates the polarization direction minimizing the extinction ratio. It varies considerably with the position on the rotator.

Fig. 7
Fig. 7

Dependence of the extinction ratio on beam spot size incident on the rotator. It was measured when k//M//[111]. The extinction ratio decreases with the reduction of the spot size. The result indicates the possibility of lateral nonuniformity of the birefringence axis as an origin of the limited value of the minimum extinction ratio.

Fig. 8
Fig. 8

Schematic isolator structure.

Fig. 9
Fig. 9

Temperature characteristics of isolators at (a) 1.55 μm and (b) 1.28 μm. Their isolations are >40 dB over almost all the temperature range shown. On the other hand, the predicted isolation of an isolator using YIG (dashed line) degrades faster when the temperature is changed.

Metrics