Abstract

The transmission of light through an infinite slit in a thick perfectly conducting screen is investigated. The spatial distribution of the near-field energy flux is determined through the formulation of four coupled integral equations, which are solved numerically. Transmission coefficients calculated by this method are in agreement with those determined by an alternative formulation. The results theoretically demonstrate the feasibility of near-field superresolution microscopy, in which the collimated radiation passed by an aperture is used to circumvent the diffraction limit of conventional optics, and further suggest the feasibility of near-field superresolution acoustic imaging.

© 1986 Optical Society of America

Full Article  |  PDF Article
Related Articles
Light propagation through nanometer-sized structures: the two-dimensional-aperture scanning near-field optical microscope

L. Novotny, D. W. Pohl, and P. Regli
J. Opt. Soc. Am. A 11(6) 1768-1779 (1994)

Integral equations applied to wave propagation in two dimensions: modeling the tip of a near-field scanning optical microscope

Christopher M. Kelso, P. David Flammer, J. A. DeSanto, and R. T. Collins
J. Opt. Soc. Am. A 18(8) 1993-2001 (2001)

Homogeneous and evanescent contributions in scalar near-field diffraction

Marek W. Kowarz
Appl. Opt. 34(17) 3055-3063 (1995)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (91)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription