Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Roess, “Giant Pulse Shortening by Resonator Transients,” J. Appl. Phys. 37, 2004 (1966).
    [CrossRef]
  2. C. Lin, “Studies of Relaxation Oscillation in Organic Dye Lasers,” IEEE J. Quantum Electron. QE-11, 602 (1975).
  3. C. Lin, C. V. Shank, “Subnanosecond Tunable Dye Laser Pulse Generation by Controlled Resonator Transients,” Appl. Phys. Lett. 26, 389 (1975).
    [CrossRef]
  4. G. Veith, A. J. Schmidt, “Generation of Tunable Subnanosecond Laser Pulses with a Nitrogen Laser Pumped Dye Laser Amplifier System,” Opt. Commun. 30, 437 (1979).
    [CrossRef]
  5. R. Cebeddu, S. deSilvestri, O. Svelto, “Subnanosecond Amplified Spontaneous Emission Pulses by a Nitrogen Pumped Dye Laser,” Opt. Commun. 34, 460 (1980).
    [CrossRef]
  6. P. H. Chiu, S. C. Hsu, J. C. Box, H. S. Kwok, “A Cascade Pumped Picosecond Dye Laser System,” IEEE J. Quantum. Electron. QE-20, 652 (1984).
    [CrossRef]
  7. H. Uchiki, M. Yoshizawa, T. Kobayashi, “Pulse Shortening in Dye Laser Side-pumped by TEA N2 Laser,” IEEE J. Quantum Electron. QE-19, 551 (1983).
    [CrossRef]
  8. A. J. Cox, C. D. Merritt, G. W. Scott, “Single Mode, Piezoelectrically Tuned, Picosecond Short-Cavity Dye Laser,” Appl. Phys. Lett. 40, 664 (1982).
    [CrossRef]
  9. A. M. Johnson, R. H. Stolen, W. M. Simpson, “80× Single-Stage Compression of Frequency Doubled Nd:YAG Laser Pulses,” Appl. Phys. Lett. 44, 729 (1984).
    [CrossRef]

1984

P. H. Chiu, S. C. Hsu, J. C. Box, H. S. Kwok, “A Cascade Pumped Picosecond Dye Laser System,” IEEE J. Quantum. Electron. QE-20, 652 (1984).
[CrossRef]

A. M. Johnson, R. H. Stolen, W. M. Simpson, “80× Single-Stage Compression of Frequency Doubled Nd:YAG Laser Pulses,” Appl. Phys. Lett. 44, 729 (1984).
[CrossRef]

1983

H. Uchiki, M. Yoshizawa, T. Kobayashi, “Pulse Shortening in Dye Laser Side-pumped by TEA N2 Laser,” IEEE J. Quantum Electron. QE-19, 551 (1983).
[CrossRef]

1982

A. J. Cox, C. D. Merritt, G. W. Scott, “Single Mode, Piezoelectrically Tuned, Picosecond Short-Cavity Dye Laser,” Appl. Phys. Lett. 40, 664 (1982).
[CrossRef]

1980

R. Cebeddu, S. deSilvestri, O. Svelto, “Subnanosecond Amplified Spontaneous Emission Pulses by a Nitrogen Pumped Dye Laser,” Opt. Commun. 34, 460 (1980).
[CrossRef]

1979

G. Veith, A. J. Schmidt, “Generation of Tunable Subnanosecond Laser Pulses with a Nitrogen Laser Pumped Dye Laser Amplifier System,” Opt. Commun. 30, 437 (1979).
[CrossRef]

1975

C. Lin, “Studies of Relaxation Oscillation in Organic Dye Lasers,” IEEE J. Quantum Electron. QE-11, 602 (1975).

C. Lin, C. V. Shank, “Subnanosecond Tunable Dye Laser Pulse Generation by Controlled Resonator Transients,” Appl. Phys. Lett. 26, 389 (1975).
[CrossRef]

1966

D. Roess, “Giant Pulse Shortening by Resonator Transients,” J. Appl. Phys. 37, 2004 (1966).
[CrossRef]

Box, J. C.

P. H. Chiu, S. C. Hsu, J. C. Box, H. S. Kwok, “A Cascade Pumped Picosecond Dye Laser System,” IEEE J. Quantum. Electron. QE-20, 652 (1984).
[CrossRef]

Cebeddu, R.

R. Cebeddu, S. deSilvestri, O. Svelto, “Subnanosecond Amplified Spontaneous Emission Pulses by a Nitrogen Pumped Dye Laser,” Opt. Commun. 34, 460 (1980).
[CrossRef]

Chiu, P. H.

P. H. Chiu, S. C. Hsu, J. C. Box, H. S. Kwok, “A Cascade Pumped Picosecond Dye Laser System,” IEEE J. Quantum. Electron. QE-20, 652 (1984).
[CrossRef]

Cox, A. J.

A. J. Cox, C. D. Merritt, G. W. Scott, “Single Mode, Piezoelectrically Tuned, Picosecond Short-Cavity Dye Laser,” Appl. Phys. Lett. 40, 664 (1982).
[CrossRef]

deSilvestri, S.

R. Cebeddu, S. deSilvestri, O. Svelto, “Subnanosecond Amplified Spontaneous Emission Pulses by a Nitrogen Pumped Dye Laser,” Opt. Commun. 34, 460 (1980).
[CrossRef]

Hsu, S. C.

P. H. Chiu, S. C. Hsu, J. C. Box, H. S. Kwok, “A Cascade Pumped Picosecond Dye Laser System,” IEEE J. Quantum. Electron. QE-20, 652 (1984).
[CrossRef]

Johnson, A. M.

A. M. Johnson, R. H. Stolen, W. M. Simpson, “80× Single-Stage Compression of Frequency Doubled Nd:YAG Laser Pulses,” Appl. Phys. Lett. 44, 729 (1984).
[CrossRef]

Kobayashi, T.

H. Uchiki, M. Yoshizawa, T. Kobayashi, “Pulse Shortening in Dye Laser Side-pumped by TEA N2 Laser,” IEEE J. Quantum Electron. QE-19, 551 (1983).
[CrossRef]

Kwok, H. S.

P. H. Chiu, S. C. Hsu, J. C. Box, H. S. Kwok, “A Cascade Pumped Picosecond Dye Laser System,” IEEE J. Quantum. Electron. QE-20, 652 (1984).
[CrossRef]

Lin, C.

C. Lin, “Studies of Relaxation Oscillation in Organic Dye Lasers,” IEEE J. Quantum Electron. QE-11, 602 (1975).

C. Lin, C. V. Shank, “Subnanosecond Tunable Dye Laser Pulse Generation by Controlled Resonator Transients,” Appl. Phys. Lett. 26, 389 (1975).
[CrossRef]

Merritt, C. D.

A. J. Cox, C. D. Merritt, G. W. Scott, “Single Mode, Piezoelectrically Tuned, Picosecond Short-Cavity Dye Laser,” Appl. Phys. Lett. 40, 664 (1982).
[CrossRef]

Roess, D.

D. Roess, “Giant Pulse Shortening by Resonator Transients,” J. Appl. Phys. 37, 2004 (1966).
[CrossRef]

Schmidt, A. J.

G. Veith, A. J. Schmidt, “Generation of Tunable Subnanosecond Laser Pulses with a Nitrogen Laser Pumped Dye Laser Amplifier System,” Opt. Commun. 30, 437 (1979).
[CrossRef]

Scott, G. W.

A. J. Cox, C. D. Merritt, G. W. Scott, “Single Mode, Piezoelectrically Tuned, Picosecond Short-Cavity Dye Laser,” Appl. Phys. Lett. 40, 664 (1982).
[CrossRef]

Shank, C. V.

C. Lin, C. V. Shank, “Subnanosecond Tunable Dye Laser Pulse Generation by Controlled Resonator Transients,” Appl. Phys. Lett. 26, 389 (1975).
[CrossRef]

Simpson, W. M.

A. M. Johnson, R. H. Stolen, W. M. Simpson, “80× Single-Stage Compression of Frequency Doubled Nd:YAG Laser Pulses,” Appl. Phys. Lett. 44, 729 (1984).
[CrossRef]

Stolen, R. H.

A. M. Johnson, R. H. Stolen, W. M. Simpson, “80× Single-Stage Compression of Frequency Doubled Nd:YAG Laser Pulses,” Appl. Phys. Lett. 44, 729 (1984).
[CrossRef]

Svelto, O.

R. Cebeddu, S. deSilvestri, O. Svelto, “Subnanosecond Amplified Spontaneous Emission Pulses by a Nitrogen Pumped Dye Laser,” Opt. Commun. 34, 460 (1980).
[CrossRef]

Uchiki, H.

H. Uchiki, M. Yoshizawa, T. Kobayashi, “Pulse Shortening in Dye Laser Side-pumped by TEA N2 Laser,” IEEE J. Quantum Electron. QE-19, 551 (1983).
[CrossRef]

Veith, G.

G. Veith, A. J. Schmidt, “Generation of Tunable Subnanosecond Laser Pulses with a Nitrogen Laser Pumped Dye Laser Amplifier System,” Opt. Commun. 30, 437 (1979).
[CrossRef]

Yoshizawa, M.

H. Uchiki, M. Yoshizawa, T. Kobayashi, “Pulse Shortening in Dye Laser Side-pumped by TEA N2 Laser,” IEEE J. Quantum Electron. QE-19, 551 (1983).
[CrossRef]

Appl. Phys. Lett.

C. Lin, C. V. Shank, “Subnanosecond Tunable Dye Laser Pulse Generation by Controlled Resonator Transients,” Appl. Phys. Lett. 26, 389 (1975).
[CrossRef]

A. J. Cox, C. D. Merritt, G. W. Scott, “Single Mode, Piezoelectrically Tuned, Picosecond Short-Cavity Dye Laser,” Appl. Phys. Lett. 40, 664 (1982).
[CrossRef]

A. M. Johnson, R. H. Stolen, W. M. Simpson, “80× Single-Stage Compression of Frequency Doubled Nd:YAG Laser Pulses,” Appl. Phys. Lett. 44, 729 (1984).
[CrossRef]

IEEE J. Quantum Electron.

H. Uchiki, M. Yoshizawa, T. Kobayashi, “Pulse Shortening in Dye Laser Side-pumped by TEA N2 Laser,” IEEE J. Quantum Electron. QE-19, 551 (1983).
[CrossRef]

C. Lin, “Studies of Relaxation Oscillation in Organic Dye Lasers,” IEEE J. Quantum Electron. QE-11, 602 (1975).

IEEE J. Quantum. Electron.

P. H. Chiu, S. C. Hsu, J. C. Box, H. S. Kwok, “A Cascade Pumped Picosecond Dye Laser System,” IEEE J. Quantum. Electron. QE-20, 652 (1984).
[CrossRef]

J. Appl. Phys.

D. Roess, “Giant Pulse Shortening by Resonator Transients,” J. Appl. Phys. 37, 2004 (1966).
[CrossRef]

Opt. Commun.

G. Veith, A. J. Schmidt, “Generation of Tunable Subnanosecond Laser Pulses with a Nitrogen Laser Pumped Dye Laser Amplifier System,” Opt. Commun. 30, 437 (1979).
[CrossRef]

R. Cebeddu, S. deSilvestri, O. Svelto, “Subnanosecond Amplified Spontaneous Emission Pulses by a Nitrogen Pumped Dye Laser,” Opt. Commun. 34, 460 (1980).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the modified CTO dye laser system. BS, 40/60 beam splitter, L1, 50-mm focal length cylindrical lens; L2, 25-mm focal length spherical lens; G, 1800-line/mm grating; M, plane mirrors; S, 350-μm slit; L3, 100-mm spherical lens; L4, 50-mm cylindrical lens; M2, 1-m focal length concave mirror.

Fig. 2
Fig. 2

Spectral output of the CTO dye laser. The longitudinal modes are separated by 5 A 0 corresponding to a cavity length of 0.3 mm. The spectral width of the individual modes is 0.6 A 0.

Fig. 3
Fig. 3

Filtered output of the CTO dye laser: (a) streak camera trace showing a FWHM duration of 15 ps; (b) spectrum showing only one longitudinal mode with negligible background.

Fig. 4
Fig. 4

Spectral output of another short cavity CTO dye laser. In this case the longitudinal modes are separated by 12 A 0 corresponding to a cavity length of 0.15 mm. The modes are 0.72 A 0 in width. The entire spectrum is shifted toward the long wavelength because of the higher dye concentration used (2 × 10−2 M/liter).

Metrics