Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Alfano, S. L. Shapiro, “Observation of Self-Phase Modulation and Small Scale Filaments in Liquids and Glasses,” “Direct Distortion of Electronic Clouds of Pure-Gas Atoms in Intense Electron Fields,” Phys. Rev. Lett. 24, 592, 1217 (1970).
    [CrossRef]
  2. R. R. Alfano, “Interaction of Picosecond Laser Pulses with Matter,” GTE Technical Report TR72-330.1 (1972).
  3. R. H. Stolen, C. Lin, “Self-Phase Modulation in Silica Optical Fibers,” Phys. Rev. A 17, 1448 (1978).
    [CrossRef]
  4. G. Z. Yang, Y. R. Shen, “Spectral Broadening of Ultrashort Pulses in a Nonlinear Medium,” Opt. Lett. 9, 510 (1984).
    [CrossRef] [PubMed]
  5. J. M. Manassah, M. Mustafa, P. P. Ho, R. R. Alfano, “Spectral Extent and Pulse Shape of Supercontinuum,” IEEE J. Quantum Electron. QE-22, 78 (1986).
  6. R. L. Fork, C. V. Shank, C. Hirlimann, R. Yen, W. J. Tomlinson, “Femtosecond White-Light Continuum Pulses,” Opt. Lett. 8, 1 (1983).
    [CrossRef] [PubMed]
  7. P. P. Ho, A. Katz, R. R. Alfano, N. H. Schiller, “The Response of Ultrafast Streak Camera System Using Femtosecond Laser Pulse,” Opt. Commun. 54, 57 (1985).
    [CrossRef]
  8. N. H. Schiller, M. Foresti, R. R. Alfano, “Picosecond Pulses Produced by Mode Locking a Nd:Glass Laser with Kodak Dye #26,” J. Opt. Soc. Am. B 2, 729 (1985).
    [CrossRef]
  9. M. R. Topp, G. C. Orner, “Group Velocity Dispersion Effects in Picosecond Spectroscopy,” Opt. Commun. 13, 276 (1975).
    [CrossRef]
  10. A. Erelyi, Asymptotic Expansions (Dover, New York, 1956), pp. 51–53.
  11. Q. X. Li, T. Jimbo, Y. L. Ku, P. P. Ho, R. R. Alfano, “Supercontinuum Laser Pulse Compression Using Volume Phase Transmission Holograms Measured by a Streak Camera,” Optics Communications, submitted (in March1986).

1986 (1)

J. M. Manassah, M. Mustafa, P. P. Ho, R. R. Alfano, “Spectral Extent and Pulse Shape of Supercontinuum,” IEEE J. Quantum Electron. QE-22, 78 (1986).

1985 (2)

P. P. Ho, A. Katz, R. R. Alfano, N. H. Schiller, “The Response of Ultrafast Streak Camera System Using Femtosecond Laser Pulse,” Opt. Commun. 54, 57 (1985).
[CrossRef]

N. H. Schiller, M. Foresti, R. R. Alfano, “Picosecond Pulses Produced by Mode Locking a Nd:Glass Laser with Kodak Dye #26,” J. Opt. Soc. Am. B 2, 729 (1985).
[CrossRef]

1984 (1)

1983 (1)

1978 (1)

R. H. Stolen, C. Lin, “Self-Phase Modulation in Silica Optical Fibers,” Phys. Rev. A 17, 1448 (1978).
[CrossRef]

1975 (1)

M. R. Topp, G. C. Orner, “Group Velocity Dispersion Effects in Picosecond Spectroscopy,” Opt. Commun. 13, 276 (1975).
[CrossRef]

1970 (1)

R. A. Alfano, S. L. Shapiro, “Observation of Self-Phase Modulation and Small Scale Filaments in Liquids and Glasses,” “Direct Distortion of Electronic Clouds of Pure-Gas Atoms in Intense Electron Fields,” Phys. Rev. Lett. 24, 592, 1217 (1970).
[CrossRef]

Alfano, R. A.

R. A. Alfano, S. L. Shapiro, “Observation of Self-Phase Modulation and Small Scale Filaments in Liquids and Glasses,” “Direct Distortion of Electronic Clouds of Pure-Gas Atoms in Intense Electron Fields,” Phys. Rev. Lett. 24, 592, 1217 (1970).
[CrossRef]

Alfano, R. R.

J. M. Manassah, M. Mustafa, P. P. Ho, R. R. Alfano, “Spectral Extent and Pulse Shape of Supercontinuum,” IEEE J. Quantum Electron. QE-22, 78 (1986).

P. P. Ho, A. Katz, R. R. Alfano, N. H. Schiller, “The Response of Ultrafast Streak Camera System Using Femtosecond Laser Pulse,” Opt. Commun. 54, 57 (1985).
[CrossRef]

N. H. Schiller, M. Foresti, R. R. Alfano, “Picosecond Pulses Produced by Mode Locking a Nd:Glass Laser with Kodak Dye #26,” J. Opt. Soc. Am. B 2, 729 (1985).
[CrossRef]

Q. X. Li, T. Jimbo, Y. L. Ku, P. P. Ho, R. R. Alfano, “Supercontinuum Laser Pulse Compression Using Volume Phase Transmission Holograms Measured by a Streak Camera,” Optics Communications, submitted (in March1986).

R. R. Alfano, “Interaction of Picosecond Laser Pulses with Matter,” GTE Technical Report TR72-330.1 (1972).

Erelyi, A.

A. Erelyi, Asymptotic Expansions (Dover, New York, 1956), pp. 51–53.

Foresti, M.

Fork, R. L.

Hirlimann, C.

Ho, P. P.

J. M. Manassah, M. Mustafa, P. P. Ho, R. R. Alfano, “Spectral Extent and Pulse Shape of Supercontinuum,” IEEE J. Quantum Electron. QE-22, 78 (1986).

P. P. Ho, A. Katz, R. R. Alfano, N. H. Schiller, “The Response of Ultrafast Streak Camera System Using Femtosecond Laser Pulse,” Opt. Commun. 54, 57 (1985).
[CrossRef]

Q. X. Li, T. Jimbo, Y. L. Ku, P. P. Ho, R. R. Alfano, “Supercontinuum Laser Pulse Compression Using Volume Phase Transmission Holograms Measured by a Streak Camera,” Optics Communications, submitted (in March1986).

Jimbo, T.

Q. X. Li, T. Jimbo, Y. L. Ku, P. P. Ho, R. R. Alfano, “Supercontinuum Laser Pulse Compression Using Volume Phase Transmission Holograms Measured by a Streak Camera,” Optics Communications, submitted (in March1986).

Katz, A.

P. P. Ho, A. Katz, R. R. Alfano, N. H. Schiller, “The Response of Ultrafast Streak Camera System Using Femtosecond Laser Pulse,” Opt. Commun. 54, 57 (1985).
[CrossRef]

Ku, Y. L.

Q. X. Li, T. Jimbo, Y. L. Ku, P. P. Ho, R. R. Alfano, “Supercontinuum Laser Pulse Compression Using Volume Phase Transmission Holograms Measured by a Streak Camera,” Optics Communications, submitted (in March1986).

Li, Q. X.

Q. X. Li, T. Jimbo, Y. L. Ku, P. P. Ho, R. R. Alfano, “Supercontinuum Laser Pulse Compression Using Volume Phase Transmission Holograms Measured by a Streak Camera,” Optics Communications, submitted (in March1986).

Lin, C.

R. H. Stolen, C. Lin, “Self-Phase Modulation in Silica Optical Fibers,” Phys. Rev. A 17, 1448 (1978).
[CrossRef]

Manassah, J. M.

J. M. Manassah, M. Mustafa, P. P. Ho, R. R. Alfano, “Spectral Extent and Pulse Shape of Supercontinuum,” IEEE J. Quantum Electron. QE-22, 78 (1986).

Mustafa, M.

J. M. Manassah, M. Mustafa, P. P. Ho, R. R. Alfano, “Spectral Extent and Pulse Shape of Supercontinuum,” IEEE J. Quantum Electron. QE-22, 78 (1986).

Orner, G. C.

M. R. Topp, G. C. Orner, “Group Velocity Dispersion Effects in Picosecond Spectroscopy,” Opt. Commun. 13, 276 (1975).
[CrossRef]

Schiller, N. H.

P. P. Ho, A. Katz, R. R. Alfano, N. H. Schiller, “The Response of Ultrafast Streak Camera System Using Femtosecond Laser Pulse,” Opt. Commun. 54, 57 (1985).
[CrossRef]

N. H. Schiller, M. Foresti, R. R. Alfano, “Picosecond Pulses Produced by Mode Locking a Nd:Glass Laser with Kodak Dye #26,” J. Opt. Soc. Am. B 2, 729 (1985).
[CrossRef]

Shank, C. V.

Shapiro, S. L.

R. A. Alfano, S. L. Shapiro, “Observation of Self-Phase Modulation and Small Scale Filaments in Liquids and Glasses,” “Direct Distortion of Electronic Clouds of Pure-Gas Atoms in Intense Electron Fields,” Phys. Rev. Lett. 24, 592, 1217 (1970).
[CrossRef]

Shen, Y. R.

Stolen, R. H.

R. H. Stolen, C. Lin, “Self-Phase Modulation in Silica Optical Fibers,” Phys. Rev. A 17, 1448 (1978).
[CrossRef]

Tomlinson, W. J.

Topp, M. R.

M. R. Topp, G. C. Orner, “Group Velocity Dispersion Effects in Picosecond Spectroscopy,” Opt. Commun. 13, 276 (1975).
[CrossRef]

Yang, G. Z.

Yen, R.

IEEE J. Quantum Electron. (1)

J. M. Manassah, M. Mustafa, P. P. Ho, R. R. Alfano, “Spectral Extent and Pulse Shape of Supercontinuum,” IEEE J. Quantum Electron. QE-22, 78 (1986).

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

P. P. Ho, A. Katz, R. R. Alfano, N. H. Schiller, “The Response of Ultrafast Streak Camera System Using Femtosecond Laser Pulse,” Opt. Commun. 54, 57 (1985).
[CrossRef]

M. R. Topp, G. C. Orner, “Group Velocity Dispersion Effects in Picosecond Spectroscopy,” Opt. Commun. 13, 276 (1975).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

R. H. Stolen, C. Lin, “Self-Phase Modulation in Silica Optical Fibers,” Phys. Rev. A 17, 1448 (1978).
[CrossRef]

Phys. Rev. Lett. (1)

R. A. Alfano, S. L. Shapiro, “Observation of Self-Phase Modulation and Small Scale Filaments in Liquids and Glasses,” “Direct Distortion of Electronic Clouds of Pure-Gas Atoms in Intense Electron Fields,” Phys. Rev. Lett. 24, 592, 1217 (1970).
[CrossRef]

Other (3)

R. R. Alfano, “Interaction of Picosecond Laser Pulses with Matter,” GTE Technical Report TR72-330.1 (1972).

A. Erelyi, Asymptotic Expansions (Dover, New York, 1956), pp. 51–53.

Q. X. Li, T. Jimbo, Y. L. Ku, P. P. Ho, R. R. Alfano, “Supercontinuum Laser Pulse Compression Using Volume Phase Transmission Holograms Measured by a Streak Camera,” Optics Communications, submitted (in March1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the setup used to measure the super-continuum laser pulse temporal distribution: W, wedge; M, mirror; F1, neutral density filters; F2, 3(3-67) Corning filters for Stokes side; F2, 3(5-57) Corning filters for anti-Stokes side; F3, narrowband filter set.

Fig. 2
Fig. 2

Temporal profile of a 530-nm incident laser pulse measured by a 2-ps resolution streak camera. The dashed line is a theoretical fit to an 8-ps FWHM Gaussian pulse.

Fig. 3
Fig. 3

Measured supercontinuum temporal distribution at different wavelengths: ○, data points with correction of the optical path in filters; Δ, data points with the correction of both the optical path in filters and group velocity dispersion in liquid.

Fig. 4
Fig. 4

Comparison of the measured temporal distribution of supercontinuum with a SPM model. The horizontal axis is the time in picoseconds. (A) A theoretical incident laser pulse with 8-ps FWHW Gaussian temporal profile. The vertical axis is an arbitrary intensity scale. The electronic nonlinear index of refraction change Δn in condensed matter has the same temporal profile as the incident laser pulse. (B) Comparison of generated supercontinuum frequency change as a function of time with the SPM model. The time axis (B) matches the time axis of the corresponding incident laser pulse in (A). The vertical axis is the frequency shift of the supercontinuum. The displayed data have been corrected for both the optical path in filters and the group velocity dispersion in the CCl4. The solid line is a calculated curve from Eq. (1), ωωL = −(ωLln2/c)δ|E|2/∂t, where ωL is the laser frequency and ω is the supercontinuum frequency. To fit the experimental data, the following parameters have been chosen: V = wLn2l/c = 4.5 × 10−7 and peak intensity = 3.6 TW/cm2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

w ( t ) - ω L = - ( ω L l / c ) ( δ n ) / t ,

Metrics