Abstract

Detailed results of the parametric behavior of the prominent seven visible transitions in a pulsed Xe IV laser are reported. The various laser parameters considered are gas pressure, excitation voltage, energy storage capacitor, and the diameter and length of the plasma tube. Based on our results we believe that lasing is favored in larger bore tubes as wall collisions play a significant role in quenching the laser action.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. D. Harper, M. Gunderson, “Construction of a High Power Xenon Ion Laser,” Rev. Sci. Instrum. 45, 400 (1974).
    [CrossRef]
  2. W. W. Simmons, R. S. Witte, “High Power Pulsed Xenon Ion Lasers,” IEEE J. Quantum Electron. QE-6466 (1970).
    [CrossRef]
  3. A. Papayoanou, R. G. Buser, I. M. Gumeiner, “Parameters in a Dynamically Compressed Xenon Plasma Laser,” IEEE J. Quantum Electron. QE-9, 580 (1973).
    [CrossRef]
  4. W. B. Bridges, G. N. Mercer, “CW Operation of High Ionisation States in a Xenon Laser,” IEEE J. Quantum Electron. QE-5476 (1969).
    [CrossRef]
  5. E.Gallego Lluesma, A. A. Tagliaferri, C. A. Massone, M. Gallavdo, “Ionic Assignment of Unidentified Xenon Laser Lines,” J. Opt. Soc. Am. 63, 362 (1973).
    [CrossRef]
  6. A. Papayoanou, I. Gumeiner, “Interferometric Measurements of Time-Dependent Electron Density in the Xenon “Pinched” Plasma Laser,” J. Appl. Phys. 42, 1914 (1971).
    [CrossRef]
  7. R. Chari, “Studies on Some Visible Transitions in Pulsed Xenon Ion Laser,” Ph.D. Thesis, Indian Institute of Technology, Kanpur, India (1984), unpublished.
  8. P. K. Cheo, H. G. Cooper, “Ultraviolet Ion Laser Transitions Between 2300 and 4000 Å,” J. Appl. Phys. 36, 1862 (1965).
    [CrossRef]

1974

C. D. Harper, M. Gunderson, “Construction of a High Power Xenon Ion Laser,” Rev. Sci. Instrum. 45, 400 (1974).
[CrossRef]

1973

A. Papayoanou, R. G. Buser, I. M. Gumeiner, “Parameters in a Dynamically Compressed Xenon Plasma Laser,” IEEE J. Quantum Electron. QE-9, 580 (1973).
[CrossRef]

E.Gallego Lluesma, A. A. Tagliaferri, C. A. Massone, M. Gallavdo, “Ionic Assignment of Unidentified Xenon Laser Lines,” J. Opt. Soc. Am. 63, 362 (1973).
[CrossRef]

1971

A. Papayoanou, I. Gumeiner, “Interferometric Measurements of Time-Dependent Electron Density in the Xenon “Pinched” Plasma Laser,” J. Appl. Phys. 42, 1914 (1971).
[CrossRef]

1970

W. W. Simmons, R. S. Witte, “High Power Pulsed Xenon Ion Lasers,” IEEE J. Quantum Electron. QE-6466 (1970).
[CrossRef]

1969

W. B. Bridges, G. N. Mercer, “CW Operation of High Ionisation States in a Xenon Laser,” IEEE J. Quantum Electron. QE-5476 (1969).
[CrossRef]

1965

P. K. Cheo, H. G. Cooper, “Ultraviolet Ion Laser Transitions Between 2300 and 4000 Å,” J. Appl. Phys. 36, 1862 (1965).
[CrossRef]

Bridges, W. B.

W. B. Bridges, G. N. Mercer, “CW Operation of High Ionisation States in a Xenon Laser,” IEEE J. Quantum Electron. QE-5476 (1969).
[CrossRef]

Buser, R. G.

A. Papayoanou, R. G. Buser, I. M. Gumeiner, “Parameters in a Dynamically Compressed Xenon Plasma Laser,” IEEE J. Quantum Electron. QE-9, 580 (1973).
[CrossRef]

Chari, R.

R. Chari, “Studies on Some Visible Transitions in Pulsed Xenon Ion Laser,” Ph.D. Thesis, Indian Institute of Technology, Kanpur, India (1984), unpublished.

Cheo, P. K.

P. K. Cheo, H. G. Cooper, “Ultraviolet Ion Laser Transitions Between 2300 and 4000 Å,” J. Appl. Phys. 36, 1862 (1965).
[CrossRef]

Cooper, H. G.

P. K. Cheo, H. G. Cooper, “Ultraviolet Ion Laser Transitions Between 2300 and 4000 Å,” J. Appl. Phys. 36, 1862 (1965).
[CrossRef]

Gallavdo, M.

Gumeiner, I.

A. Papayoanou, I. Gumeiner, “Interferometric Measurements of Time-Dependent Electron Density in the Xenon “Pinched” Plasma Laser,” J. Appl. Phys. 42, 1914 (1971).
[CrossRef]

Gumeiner, I. M.

A. Papayoanou, R. G. Buser, I. M. Gumeiner, “Parameters in a Dynamically Compressed Xenon Plasma Laser,” IEEE J. Quantum Electron. QE-9, 580 (1973).
[CrossRef]

Gunderson, M.

C. D. Harper, M. Gunderson, “Construction of a High Power Xenon Ion Laser,” Rev. Sci. Instrum. 45, 400 (1974).
[CrossRef]

Harper, C. D.

C. D. Harper, M. Gunderson, “Construction of a High Power Xenon Ion Laser,” Rev. Sci. Instrum. 45, 400 (1974).
[CrossRef]

Lluesma, E.Gallego

Massone, C. A.

Mercer, G. N.

W. B. Bridges, G. N. Mercer, “CW Operation of High Ionisation States in a Xenon Laser,” IEEE J. Quantum Electron. QE-5476 (1969).
[CrossRef]

Papayoanou, A.

A. Papayoanou, R. G. Buser, I. M. Gumeiner, “Parameters in a Dynamically Compressed Xenon Plasma Laser,” IEEE J. Quantum Electron. QE-9, 580 (1973).
[CrossRef]

A. Papayoanou, I. Gumeiner, “Interferometric Measurements of Time-Dependent Electron Density in the Xenon “Pinched” Plasma Laser,” J. Appl. Phys. 42, 1914 (1971).
[CrossRef]

Simmons, W. W.

W. W. Simmons, R. S. Witte, “High Power Pulsed Xenon Ion Lasers,” IEEE J. Quantum Electron. QE-6466 (1970).
[CrossRef]

Tagliaferri, A. A.

Witte, R. S.

W. W. Simmons, R. S. Witte, “High Power Pulsed Xenon Ion Lasers,” IEEE J. Quantum Electron. QE-6466 (1970).
[CrossRef]

IEEE J. Quantum Electron.

W. W. Simmons, R. S. Witte, “High Power Pulsed Xenon Ion Lasers,” IEEE J. Quantum Electron. QE-6466 (1970).
[CrossRef]

A. Papayoanou, R. G. Buser, I. M. Gumeiner, “Parameters in a Dynamically Compressed Xenon Plasma Laser,” IEEE J. Quantum Electron. QE-9, 580 (1973).
[CrossRef]

W. B. Bridges, G. N. Mercer, “CW Operation of High Ionisation States in a Xenon Laser,” IEEE J. Quantum Electron. QE-5476 (1969).
[CrossRef]

J. Appl. Phys.

A. Papayoanou, I. Gumeiner, “Interferometric Measurements of Time-Dependent Electron Density in the Xenon “Pinched” Plasma Laser,” J. Appl. Phys. 42, 1914 (1971).
[CrossRef]

P. K. Cheo, H. G. Cooper, “Ultraviolet Ion Laser Transitions Between 2300 and 4000 Å,” J. Appl. Phys. 36, 1862 (1965).
[CrossRef]

J. Opt. Soc. Am.

Rev. Sci. Instrum.

C. D. Harper, M. Gunderson, “Construction of a High Power Xenon Ion Laser,” Rev. Sci. Instrum. 45, 400 (1974).
[CrossRef]

Other

R. Chari, “Studies on Some Visible Transitions in Pulsed Xenon Ion Laser,” Ph.D. Thesis, Indian Institute of Technology, Kanpur, India (1984), unpublished.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) All-line optimum pressure vs tube diameter and P0 vs excitation voltage. Solid lines show the optimum pressure variation, (b) Individual line optimum pressure variation with tube diameter. The excitation voltage is 4.5 kV. The table indicates the best-fit n values for each wavelength.

Fig. 2
Fig. 2

(a) Threshold electric field variation with pressure; the tube diameter is 4 mm. (b) Variation in power output in different wavelengths with electric field; the tube diameter is 4 mm.

Fig. 3
Fig. 3

Log η vs tube diameter; η values have been multiplied with an appropriate scale constant.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P opt = P 0 C D ,
P 0 = a + bV ;
P opt D n = constant .

Metrics