Abstract

Absolute intensities were measured at room temperature for thirty-nine lines in the qQ, qP, and qR branches of the ν3 (A1) parallel-type band of 12CH3D between 1250 and 1340 cm−1 using a tunable diode laser spectrometer. Although the line intensities were determined to a precision ≈3%, the square of the vibrational transition dipole moment matrix element derived from each mean line intensity varied by ≈20%, indicating intensity perturbations possibly caused by Coriolis interaction with the nearby ν6 fundamental. Room temperature air- and N2-broadened halfwidths have also been determined for seventeen of these lines and the measured halfwidth values varied from 0.023 cm−1 atm−1 for high J,K transitions to ∼0.067 cm−1 atm−1 for low J,K transitions. The average of the ratios of N2- to air-broadened halfwidths was 1.01, with a standard deviation of 0.01, indicating almost equal broadening efficiencies for N2 and air. Room temperature self-broadened halfwidths were also determined for three transitions with a mean value of 0.0803 ± 0.0010 cm−1 atm−1.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Malathy Devi, C. P. Rinsland, M. A. H. Smith, D. C. Benner, “Measurements of 12CH4ν4 Band Halfwidths Using a Tunable Diode Laser System and a Fourier Transform Spectrometer,” Appl. Opt. 24, 2788 (1985).
    [CrossRef] [PubMed]
  2. V. Malathy Devi, C. P. Rinsland, M. A. H. Smith, D. C. Benner, “Tunable Diode Laser Measurements of Widths of Air- and Nitrogen-Broadened Lines in the ν4 Band of 13CH4,” Appl. Opt. 24, 3321 (1985).
    [CrossRef] [PubMed]
  3. S. Sarangi, P. Varanasi, “Intensity Measurements in the 4.54 μ Fundamental of CH3D at Low Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 15, 291 (1975).
    [CrossRef]
  4. P. Varanasi, S. J. Kim, “Spectral Transmission Measurements in the ν6-Fundamental of 12CH3D at 8.65 μm,” J. Quant. Spectrosc. Radiat. Transfer 25, 301 (1981).
    [CrossRef]
  5. L. W. Pinkley, K. Narahari Rao, G. Tarrago, G. Poussigue, M. Dang-Nhu, “Analysis of the ν6 Band of 12CH3D at 8.6 μm,” J. Mol. Spectrosc. 68, 195 (1977).
    [CrossRef]
  6. C. Chackerian, G. Guelachvili, “Direct Retrieval of Lineshape Parameters: Absolute Line Intensities for the ν2 Band of CH3D,” J. Mol. Spectrosc. 97, 316 (1983).
    [CrossRef]
  7. D. E. Jennings, “Splittings in the ν6 Band of 12CH3D,” J. Mol. Spectrosc. 104, 199 (1984).
    [CrossRef]
  8. P. Varanasi, L. P. Giver, F. P. J. Valero, “A Laboratory Study of the 8.65 μm. Fundamental of 12CH3D at Temperatures Relevant to Titan's Atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 30, 517 (1983).
    [CrossRef]
  9. P. Varanasi, L. P. Giver, F. P. J. Valero, “Nitrogen-Broadened Lines of Monodeuterated Methane in the 4.5 μm Region at Low Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 30, 511 (1983).
    [CrossRef]
  10. G. Tarrago, K. Narahari Rao, L. W. Pinkley, “Analysis of the ν3 Band of 12CH3D at 7.6 μm,” J. Mol. Spectrosc. 79, 31 (1980).
    [CrossRef]
  11. S. Saeki, M. Mizuno, S. Kondo, “Infrared Absorption Intensities of Methane and Fluoromethanes,” Spectrochim. Acta Part A 32, 403 (1976).
    [CrossRef]
  12. P. A. Jansson, C. L. Korb, “A Table of the Equivalent Widths of Isolated Lines with Combined Doppler and Collision Broadened Profiles,” J. Quant. Spectrosc. Radiat. Transfer 8, 1399 (1968).
    [CrossRef]
  13. L. Henry, A. Valentin, W. J. Lafferty, J. T. Hougen, V. Malathy Devi, P. P. Das, K. Narahari Rao, “Analysis of High Resolution Fourier Transform and Diode Laser Spectra of the ν9 Band of Ethane,” J. Mol. Spectrosc. 100, 260 (1983).
    [CrossRef]
  14. C. Chackerian, G. Guelachvili, “Ground-State Rotational Constants of 12CH3D,” J. Mol. Spectrosc. 84, 447 (1980);C. Chackerian, E. Howell, G. Guelachvili, W. B. Olson, paper RE7, “Complete Ground State Rotational Constants of CH3D from Perturbation Allowed Transitions in the 2ν6 Band,” presented at the Thirty-Sixth Symposium on Molecular Spectroscopy, Columbus, OH (June 1981).
    [CrossRef]
  15. A. G. Robiette, M. Dang-Nhu, “Rotational Partition Functions of Methane and its Isotopic Species,” J. Quant. Spectrosc. Radiat. Transfer 22, 499 (1979).
    [CrossRef]
  16. C. Chackerian, “12CH3D Rovibrational Intensities and the Jovian D/H Ratio,” Astrophys. J. 273, L47 (1983).
    [CrossRef]
  17. G. Herzberg, Infrared and Raman Spectra (Van Nostrand, New York, 1945).

1985 (2)

1984 (1)

D. E. Jennings, “Splittings in the ν6 Band of 12CH3D,” J. Mol. Spectrosc. 104, 199 (1984).
[CrossRef]

1983 (5)

P. Varanasi, L. P. Giver, F. P. J. Valero, “A Laboratory Study of the 8.65 μm. Fundamental of 12CH3D at Temperatures Relevant to Titan's Atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 30, 517 (1983).
[CrossRef]

P. Varanasi, L. P. Giver, F. P. J. Valero, “Nitrogen-Broadened Lines of Monodeuterated Methane in the 4.5 μm Region at Low Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 30, 511 (1983).
[CrossRef]

C. Chackerian, G. Guelachvili, “Direct Retrieval of Lineshape Parameters: Absolute Line Intensities for the ν2 Band of CH3D,” J. Mol. Spectrosc. 97, 316 (1983).
[CrossRef]

L. Henry, A. Valentin, W. J. Lafferty, J. T. Hougen, V. Malathy Devi, P. P. Das, K. Narahari Rao, “Analysis of High Resolution Fourier Transform and Diode Laser Spectra of the ν9 Band of Ethane,” J. Mol. Spectrosc. 100, 260 (1983).
[CrossRef]

C. Chackerian, “12CH3D Rovibrational Intensities and the Jovian D/H Ratio,” Astrophys. J. 273, L47 (1983).
[CrossRef]

1981 (1)

P. Varanasi, S. J. Kim, “Spectral Transmission Measurements in the ν6-Fundamental of 12CH3D at 8.65 μm,” J. Quant. Spectrosc. Radiat. Transfer 25, 301 (1981).
[CrossRef]

1980 (2)

G. Tarrago, K. Narahari Rao, L. W. Pinkley, “Analysis of the ν3 Band of 12CH3D at 7.6 μm,” J. Mol. Spectrosc. 79, 31 (1980).
[CrossRef]

C. Chackerian, G. Guelachvili, “Ground-State Rotational Constants of 12CH3D,” J. Mol. Spectrosc. 84, 447 (1980);C. Chackerian, E. Howell, G. Guelachvili, W. B. Olson, paper RE7, “Complete Ground State Rotational Constants of CH3D from Perturbation Allowed Transitions in the 2ν6 Band,” presented at the Thirty-Sixth Symposium on Molecular Spectroscopy, Columbus, OH (June 1981).
[CrossRef]

1979 (1)

A. G. Robiette, M. Dang-Nhu, “Rotational Partition Functions of Methane and its Isotopic Species,” J. Quant. Spectrosc. Radiat. Transfer 22, 499 (1979).
[CrossRef]

1977 (1)

L. W. Pinkley, K. Narahari Rao, G. Tarrago, G. Poussigue, M. Dang-Nhu, “Analysis of the ν6 Band of 12CH3D at 8.6 μm,” J. Mol. Spectrosc. 68, 195 (1977).
[CrossRef]

1976 (1)

S. Saeki, M. Mizuno, S. Kondo, “Infrared Absorption Intensities of Methane and Fluoromethanes,” Spectrochim. Acta Part A 32, 403 (1976).
[CrossRef]

1975 (1)

S. Sarangi, P. Varanasi, “Intensity Measurements in the 4.54 μ Fundamental of CH3D at Low Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 15, 291 (1975).
[CrossRef]

1968 (1)

P. A. Jansson, C. L. Korb, “A Table of the Equivalent Widths of Isolated Lines with Combined Doppler and Collision Broadened Profiles,” J. Quant. Spectrosc. Radiat. Transfer 8, 1399 (1968).
[CrossRef]

Benner, D. C.

Chackerian, C.

C. Chackerian, “12CH3D Rovibrational Intensities and the Jovian D/H Ratio,” Astrophys. J. 273, L47 (1983).
[CrossRef]

C. Chackerian, G. Guelachvili, “Direct Retrieval of Lineshape Parameters: Absolute Line Intensities for the ν2 Band of CH3D,” J. Mol. Spectrosc. 97, 316 (1983).
[CrossRef]

C. Chackerian, G. Guelachvili, “Ground-State Rotational Constants of 12CH3D,” J. Mol. Spectrosc. 84, 447 (1980);C. Chackerian, E. Howell, G. Guelachvili, W. B. Olson, paper RE7, “Complete Ground State Rotational Constants of CH3D from Perturbation Allowed Transitions in the 2ν6 Band,” presented at the Thirty-Sixth Symposium on Molecular Spectroscopy, Columbus, OH (June 1981).
[CrossRef]

Dang-Nhu, M.

A. G. Robiette, M. Dang-Nhu, “Rotational Partition Functions of Methane and its Isotopic Species,” J. Quant. Spectrosc. Radiat. Transfer 22, 499 (1979).
[CrossRef]

L. W. Pinkley, K. Narahari Rao, G. Tarrago, G. Poussigue, M. Dang-Nhu, “Analysis of the ν6 Band of 12CH3D at 8.6 μm,” J. Mol. Spectrosc. 68, 195 (1977).
[CrossRef]

Das, P. P.

L. Henry, A. Valentin, W. J. Lafferty, J. T. Hougen, V. Malathy Devi, P. P. Das, K. Narahari Rao, “Analysis of High Resolution Fourier Transform and Diode Laser Spectra of the ν9 Band of Ethane,” J. Mol. Spectrosc. 100, 260 (1983).
[CrossRef]

Giver, L. P.

P. Varanasi, L. P. Giver, F. P. J. Valero, “Nitrogen-Broadened Lines of Monodeuterated Methane in the 4.5 μm Region at Low Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 30, 511 (1983).
[CrossRef]

P. Varanasi, L. P. Giver, F. P. J. Valero, “A Laboratory Study of the 8.65 μm. Fundamental of 12CH3D at Temperatures Relevant to Titan's Atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 30, 517 (1983).
[CrossRef]

Guelachvili, G.

C. Chackerian, G. Guelachvili, “Direct Retrieval of Lineshape Parameters: Absolute Line Intensities for the ν2 Band of CH3D,” J. Mol. Spectrosc. 97, 316 (1983).
[CrossRef]

C. Chackerian, G. Guelachvili, “Ground-State Rotational Constants of 12CH3D,” J. Mol. Spectrosc. 84, 447 (1980);C. Chackerian, E. Howell, G. Guelachvili, W. B. Olson, paper RE7, “Complete Ground State Rotational Constants of CH3D from Perturbation Allowed Transitions in the 2ν6 Band,” presented at the Thirty-Sixth Symposium on Molecular Spectroscopy, Columbus, OH (June 1981).
[CrossRef]

Henry, L.

L. Henry, A. Valentin, W. J. Lafferty, J. T. Hougen, V. Malathy Devi, P. P. Das, K. Narahari Rao, “Analysis of High Resolution Fourier Transform and Diode Laser Spectra of the ν9 Band of Ethane,” J. Mol. Spectrosc. 100, 260 (1983).
[CrossRef]

Herzberg, G.

G. Herzberg, Infrared and Raman Spectra (Van Nostrand, New York, 1945).

Hougen, J. T.

L. Henry, A. Valentin, W. J. Lafferty, J. T. Hougen, V. Malathy Devi, P. P. Das, K. Narahari Rao, “Analysis of High Resolution Fourier Transform and Diode Laser Spectra of the ν9 Band of Ethane,” J. Mol. Spectrosc. 100, 260 (1983).
[CrossRef]

Jansson, P. A.

P. A. Jansson, C. L. Korb, “A Table of the Equivalent Widths of Isolated Lines with Combined Doppler and Collision Broadened Profiles,” J. Quant. Spectrosc. Radiat. Transfer 8, 1399 (1968).
[CrossRef]

Jennings, D. E.

D. E. Jennings, “Splittings in the ν6 Band of 12CH3D,” J. Mol. Spectrosc. 104, 199 (1984).
[CrossRef]

Kim, S. J.

P. Varanasi, S. J. Kim, “Spectral Transmission Measurements in the ν6-Fundamental of 12CH3D at 8.65 μm,” J. Quant. Spectrosc. Radiat. Transfer 25, 301 (1981).
[CrossRef]

Kondo, S.

S. Saeki, M. Mizuno, S. Kondo, “Infrared Absorption Intensities of Methane and Fluoromethanes,” Spectrochim. Acta Part A 32, 403 (1976).
[CrossRef]

Korb, C. L.

P. A. Jansson, C. L. Korb, “A Table of the Equivalent Widths of Isolated Lines with Combined Doppler and Collision Broadened Profiles,” J. Quant. Spectrosc. Radiat. Transfer 8, 1399 (1968).
[CrossRef]

Lafferty, W. J.

L. Henry, A. Valentin, W. J. Lafferty, J. T. Hougen, V. Malathy Devi, P. P. Das, K. Narahari Rao, “Analysis of High Resolution Fourier Transform and Diode Laser Spectra of the ν9 Band of Ethane,” J. Mol. Spectrosc. 100, 260 (1983).
[CrossRef]

Malathy Devi, V.

Mizuno, M.

S. Saeki, M. Mizuno, S. Kondo, “Infrared Absorption Intensities of Methane and Fluoromethanes,” Spectrochim. Acta Part A 32, 403 (1976).
[CrossRef]

Narahari Rao, K.

L. Henry, A. Valentin, W. J. Lafferty, J. T. Hougen, V. Malathy Devi, P. P. Das, K. Narahari Rao, “Analysis of High Resolution Fourier Transform and Diode Laser Spectra of the ν9 Band of Ethane,” J. Mol. Spectrosc. 100, 260 (1983).
[CrossRef]

G. Tarrago, K. Narahari Rao, L. W. Pinkley, “Analysis of the ν3 Band of 12CH3D at 7.6 μm,” J. Mol. Spectrosc. 79, 31 (1980).
[CrossRef]

L. W. Pinkley, K. Narahari Rao, G. Tarrago, G. Poussigue, M. Dang-Nhu, “Analysis of the ν6 Band of 12CH3D at 8.6 μm,” J. Mol. Spectrosc. 68, 195 (1977).
[CrossRef]

Pinkley, L. W.

G. Tarrago, K. Narahari Rao, L. W. Pinkley, “Analysis of the ν3 Band of 12CH3D at 7.6 μm,” J. Mol. Spectrosc. 79, 31 (1980).
[CrossRef]

L. W. Pinkley, K. Narahari Rao, G. Tarrago, G. Poussigue, M. Dang-Nhu, “Analysis of the ν6 Band of 12CH3D at 8.6 μm,” J. Mol. Spectrosc. 68, 195 (1977).
[CrossRef]

Poussigue, G.

L. W. Pinkley, K. Narahari Rao, G. Tarrago, G. Poussigue, M. Dang-Nhu, “Analysis of the ν6 Band of 12CH3D at 8.6 μm,” J. Mol. Spectrosc. 68, 195 (1977).
[CrossRef]

Rinsland, C. P.

Robiette, A. G.

A. G. Robiette, M. Dang-Nhu, “Rotational Partition Functions of Methane and its Isotopic Species,” J. Quant. Spectrosc. Radiat. Transfer 22, 499 (1979).
[CrossRef]

Saeki, S.

S. Saeki, M. Mizuno, S. Kondo, “Infrared Absorption Intensities of Methane and Fluoromethanes,” Spectrochim. Acta Part A 32, 403 (1976).
[CrossRef]

Sarangi, S.

S. Sarangi, P. Varanasi, “Intensity Measurements in the 4.54 μ Fundamental of CH3D at Low Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 15, 291 (1975).
[CrossRef]

Smith, M. A. H.

Tarrago, G.

G. Tarrago, K. Narahari Rao, L. W. Pinkley, “Analysis of the ν3 Band of 12CH3D at 7.6 μm,” J. Mol. Spectrosc. 79, 31 (1980).
[CrossRef]

L. W. Pinkley, K. Narahari Rao, G. Tarrago, G. Poussigue, M. Dang-Nhu, “Analysis of the ν6 Band of 12CH3D at 8.6 μm,” J. Mol. Spectrosc. 68, 195 (1977).
[CrossRef]

Valentin, A.

L. Henry, A. Valentin, W. J. Lafferty, J. T. Hougen, V. Malathy Devi, P. P. Das, K. Narahari Rao, “Analysis of High Resolution Fourier Transform and Diode Laser Spectra of the ν9 Band of Ethane,” J. Mol. Spectrosc. 100, 260 (1983).
[CrossRef]

Valero, F. P. J.

P. Varanasi, L. P. Giver, F. P. J. Valero, “Nitrogen-Broadened Lines of Monodeuterated Methane in the 4.5 μm Region at Low Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 30, 511 (1983).
[CrossRef]

P. Varanasi, L. P. Giver, F. P. J. Valero, “A Laboratory Study of the 8.65 μm. Fundamental of 12CH3D at Temperatures Relevant to Titan's Atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 30, 517 (1983).
[CrossRef]

Varanasi, P.

P. Varanasi, L. P. Giver, F. P. J. Valero, “A Laboratory Study of the 8.65 μm. Fundamental of 12CH3D at Temperatures Relevant to Titan's Atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 30, 517 (1983).
[CrossRef]

P. Varanasi, L. P. Giver, F. P. J. Valero, “Nitrogen-Broadened Lines of Monodeuterated Methane in the 4.5 μm Region at Low Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 30, 511 (1983).
[CrossRef]

P. Varanasi, S. J. Kim, “Spectral Transmission Measurements in the ν6-Fundamental of 12CH3D at 8.65 μm,” J. Quant. Spectrosc. Radiat. Transfer 25, 301 (1981).
[CrossRef]

S. Sarangi, P. Varanasi, “Intensity Measurements in the 4.54 μ Fundamental of CH3D at Low Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 15, 291 (1975).
[CrossRef]

Appl. Opt. (2)

Astrophys. J. (1)

C. Chackerian, “12CH3D Rovibrational Intensities and the Jovian D/H Ratio,” Astrophys. J. 273, L47 (1983).
[CrossRef]

J. Mol. Spectrosc. (6)

L. Henry, A. Valentin, W. J. Lafferty, J. T. Hougen, V. Malathy Devi, P. P. Das, K. Narahari Rao, “Analysis of High Resolution Fourier Transform and Diode Laser Spectra of the ν9 Band of Ethane,” J. Mol. Spectrosc. 100, 260 (1983).
[CrossRef]

C. Chackerian, G. Guelachvili, “Ground-State Rotational Constants of 12CH3D,” J. Mol. Spectrosc. 84, 447 (1980);C. Chackerian, E. Howell, G. Guelachvili, W. B. Olson, paper RE7, “Complete Ground State Rotational Constants of CH3D from Perturbation Allowed Transitions in the 2ν6 Band,” presented at the Thirty-Sixth Symposium on Molecular Spectroscopy, Columbus, OH (June 1981).
[CrossRef]

L. W. Pinkley, K. Narahari Rao, G. Tarrago, G. Poussigue, M. Dang-Nhu, “Analysis of the ν6 Band of 12CH3D at 8.6 μm,” J. Mol. Spectrosc. 68, 195 (1977).
[CrossRef]

C. Chackerian, G. Guelachvili, “Direct Retrieval of Lineshape Parameters: Absolute Line Intensities for the ν2 Band of CH3D,” J. Mol. Spectrosc. 97, 316 (1983).
[CrossRef]

D. E. Jennings, “Splittings in the ν6 Band of 12CH3D,” J. Mol. Spectrosc. 104, 199 (1984).
[CrossRef]

G. Tarrago, K. Narahari Rao, L. W. Pinkley, “Analysis of the ν3 Band of 12CH3D at 7.6 μm,” J. Mol. Spectrosc. 79, 31 (1980).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (6)

S. Sarangi, P. Varanasi, “Intensity Measurements in the 4.54 μ Fundamental of CH3D at Low Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 15, 291 (1975).
[CrossRef]

P. Varanasi, S. J. Kim, “Spectral Transmission Measurements in the ν6-Fundamental of 12CH3D at 8.65 μm,” J. Quant. Spectrosc. Radiat. Transfer 25, 301 (1981).
[CrossRef]

P. Varanasi, L. P. Giver, F. P. J. Valero, “A Laboratory Study of the 8.65 μm. Fundamental of 12CH3D at Temperatures Relevant to Titan's Atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 30, 517 (1983).
[CrossRef]

P. Varanasi, L. P. Giver, F. P. J. Valero, “Nitrogen-Broadened Lines of Monodeuterated Methane in the 4.5 μm Region at Low Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 30, 511 (1983).
[CrossRef]

A. G. Robiette, M. Dang-Nhu, “Rotational Partition Functions of Methane and its Isotopic Species,” J. Quant. Spectrosc. Radiat. Transfer 22, 499 (1979).
[CrossRef]

P. A. Jansson, C. L. Korb, “A Table of the Equivalent Widths of Isolated Lines with Combined Doppler and Collision Broadened Profiles,” J. Quant. Spectrosc. Radiat. Transfer 8, 1399 (1968).
[CrossRef]

Spectrochim. Acta Part A (1)

S. Saeki, M. Mizuno, S. Kondo, “Infrared Absorption Intensities of Methane and Fluoromethanes,” Spectrochim. Acta Part A 32, 403 (1976).
[CrossRef]

Other (1)

G. Herzberg, Infrared and Raman Spectra (Van Nostrand, New York, 1945).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diode laser spectrum of 12CH3D in the Q-branch region near 1305.9 cm–1. Most of the lines in this region which were blended in the previous study of Tarrago et al.10 are resolved in this spectrum. The sample pressure used in recording this spectrum was 0.4 Torr.

Fig. 2
Fig. 2

Example of an intensity scan of 12CH3D recorded in this study. The zero level as determined by blocking the beam is shown at top right.

Fig. 3
Fig. 3

Plot of observed Lorentz halfwidths as a function of broadener pressures for the qP(4,2,E) line at 1275.1281 cm–1. Almost equal broadening efficiencies for N2 and air are discernible in this plot.

Tables (4)

Tables Icon

Table I Parameters Determined and Sample Characteristics for the ν3 Band of 12CH3D

Tables Icon

Table II P-, Q-, and R-Branch Line Intensities (In cm−2 atm−1) for the ν3 Band of 12CH3D (at 296 K)

Tables Icon

Table III Air- and Nitrogen-Broadened Half widths for the ν3 Band Lines of 12CH3D (at 296 K)

Tables Icon

Table IV Self-Broadened Halfwldths for the ν3 Band Lines of 12CH3D (at 296 K)

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

S ( J , K ) = [ 8 π 3 N 3 h c Q V Q R ] ( T 0 T ) | R | 2 L ν g J K exp ( E R h c / k T ) exp ( E V h c / k T ) [ 1 exp ( h c ν / k T ) ] F . }
E R ( J , K ) = B 0 [ J ( J + 1 ) K 2 ] + A 0 K 2 D 0 J J 2 ( J + 1 ) 2 D 0 J K J ( J + 1 ) K D 0 K K 4 . }
L = ( J 2 K 2 ) / [ J ( 2 J + 1 ) ] for Δ J = 1 , = K 2 / [ J ( J + 1 ) ] for Δ J = 0 , = [ ( J + 1 ) 2 K 2 ] / [ ( J + 1 ) ( 2 J + 1 ) ] for Δ J = + 1 ,
g J K = ( 2 δ 0 , K ) 4 ( 2 J + 1 ) for K divisible by 3 , and for K = 0 , = ( 2 δ 0 , K ) 2 ( 2 J + 1 ) for K not divisible by 3 , .
b L = b L 0 ( CH 3 D CH 3 D ) p ( CH 3 D ) + b L 0 ( CH 3 D N 2 or air ) p ( N 2 or air ) .
b L 0 ( CH 3 D air )
b L 0 ( CH 3 D CH 3 D )
S obs S calc
{ 1258.5181 1258.5182
{ 1301.2176 1301.2182
{ 1302.6345 1302.6348
{ 1305.9680 1305.9680
{ 1306.7374 1306.7374
b L 0 ( N 2 )
b L 0 ( CH 3 D air )
b L 0 ( CH 3 D N 2 )
b L 0 ( air )

Metrics