Abstract

We use self-similarity to describe the motion of vapor emanating from a water droplet that has been exploded by a short pulse from a high energy laser. This approach allows us to obtain a qualitative description of the experiment of Kafalas and Herrmann.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Taylor, “Air Wave Surrounding an Expanding Sphere,” Proc. R. Soc. London Ser. A 186, 273 (1946).
    [Crossref]
  2. L. I. Sedov, Similarity and Dimensional Methods in Mechanics, M. Holt, Ed. (Academic, New York, 1959).
  3. K. P. Stanyukovich, “On Automodel Solutions of Equations of Hydrodynamics Possessing Central Symmetry,” Doklady 48, 310 (1945).
  4. Ya. B. Zeldovich, Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. 2 (Academic, New York, 1967).
  5. G. E. Caledonia, J. D. Teare, “Vaporization of Aerosols,” J. Heat Transfer 99, 281 (1977).
    [Crossref]
  6. R. L. Armstrong, “Aerosol Heating and Vaporization by Pulsed Light Beams,” Appl. Opt. 23, 148 (1984).
    [Crossref] [PubMed]
  7. R. L. Armstrong, S. A. W. Gerstl, A. Zardecki, “Nonlinear Pulse Propagation in the Presence of Evaporating Aerosols,” J. Opt. Soc. Am. A 2, 1739 (1985).
    [Crossref]
  8. G. Sageev, J. H. Seinfeld, “Laser Heating of an Aqueous Aerosol Particle,” Appl. Opt. 23, 4368 (1984).
    [Crossref] [PubMed]
  9. S. M. Chitanvis, “High Energy Laser Interactions with Water Droplets,” Appl. Opt. 24, 3552 (1985).
    [Crossref] [PubMed]
  10. P. Kafalas, J. Herrmann, “Dynamics and Energetics of the Explosive Vaporization of Fog Droplets by a 10.6-μm Laser Pulse,” Appl. Opt. 12, 772 (1973).
    [Crossref] [PubMed]
  11. S. M. Chitanvis, “Self-similarity in Electrohydrodynamics,” Physica A (198X), in press.
  12. B. Yudanin, M. Lax, “Hydrodynamic Response to Uniform Laser Absorption in a Droplet,” paper presented at the 1985 CRDC Conference on Obscuration and Aerosol Research.

1985 (2)

1984 (2)

1977 (1)

G. E. Caledonia, J. D. Teare, “Vaporization of Aerosols,” J. Heat Transfer 99, 281 (1977).
[Crossref]

1973 (1)

1946 (1)

G. I. Taylor, “Air Wave Surrounding an Expanding Sphere,” Proc. R. Soc. London Ser. A 186, 273 (1946).
[Crossref]

1945 (1)

K. P. Stanyukovich, “On Automodel Solutions of Equations of Hydrodynamics Possessing Central Symmetry,” Doklady 48, 310 (1945).

Armstrong, R. L.

Caledonia, G. E.

G. E. Caledonia, J. D. Teare, “Vaporization of Aerosols,” J. Heat Transfer 99, 281 (1977).
[Crossref]

Chitanvis, S. M.

S. M. Chitanvis, “High Energy Laser Interactions with Water Droplets,” Appl. Opt. 24, 3552 (1985).
[Crossref] [PubMed]

S. M. Chitanvis, “Self-similarity in Electrohydrodynamics,” Physica A (198X), in press.

Gerstl, S. A. W.

Herrmann, J.

Kafalas, P.

Lax, M.

B. Yudanin, M. Lax, “Hydrodynamic Response to Uniform Laser Absorption in a Droplet,” paper presented at the 1985 CRDC Conference on Obscuration and Aerosol Research.

Raizer, Yu. P.

Ya. B. Zeldovich, Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. 2 (Academic, New York, 1967).

Sageev, G.

Sedov, L. I.

L. I. Sedov, Similarity and Dimensional Methods in Mechanics, M. Holt, Ed. (Academic, New York, 1959).

Seinfeld, J. H.

Stanyukovich, K. P.

K. P. Stanyukovich, “On Automodel Solutions of Equations of Hydrodynamics Possessing Central Symmetry,” Doklady 48, 310 (1945).

Taylor, G. I.

G. I. Taylor, “Air Wave Surrounding an Expanding Sphere,” Proc. R. Soc. London Ser. A 186, 273 (1946).
[Crossref]

Teare, J. D.

G. E. Caledonia, J. D. Teare, “Vaporization of Aerosols,” J. Heat Transfer 99, 281 (1977).
[Crossref]

Yudanin, B.

B. Yudanin, M. Lax, “Hydrodynamic Response to Uniform Laser Absorption in a Droplet,” paper presented at the 1985 CRDC Conference on Obscuration and Aerosol Research.

Zardecki, A.

Zeldovich, Ya. B.

Ya. B. Zeldovich, Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. 2 (Academic, New York, 1967).

Appl. Opt. (4)

Doklady (1)

K. P. Stanyukovich, “On Automodel Solutions of Equations of Hydrodynamics Possessing Central Symmetry,” Doklady 48, 310 (1945).

J. Heat Transfer (1)

G. E. Caledonia, J. D. Teare, “Vaporization of Aerosols,” J. Heat Transfer 99, 281 (1977).
[Crossref]

J. Opt. Soc. Am. A (1)

Proc. R. Soc. London Ser. A (1)

G. I. Taylor, “Air Wave Surrounding an Expanding Sphere,” Proc. R. Soc. London Ser. A 186, 273 (1946).
[Crossref]

Other (4)

L. I. Sedov, Similarity and Dimensional Methods in Mechanics, M. Holt, Ed. (Academic, New York, 1959).

Ya. B. Zeldovich, Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. 2 (Academic, New York, 1967).

S. M. Chitanvis, “Self-similarity in Electrohydrodynamics,” Physica A (198X), in press.

B. Yudanin, M. Lax, “Hydrodynamic Response to Uniform Laser Absorption in a Droplet,” paper presented at the 1985 CRDC Conference on Obscuration and Aerosol Research.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Normalized density shows a decrease outside the surface of the exploding droplet, indicating a vapor layer. The surface speed is 103cs, cs being the acoustic speed.

Fig. 2
Fig. 2

Velocity (normalized) displays a shock starting at ξ ∼ 2. The surface speed is 103cs, cs being the acoustic speed.

Fig. 3
Fig. 3

Temperature displays a cooling curve. The surface speed is 103cs, cs being the acoustic speed.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

ρ ( r , t ) [ υ ( r , t ) / t + υ ( r , t ) υ ( r , t ) / r ] = P ( r , t ) / r ,
ρ ( r , t ) / t = ( / r + 2 / r ) [ υ ( r , t ) ρ ( r , t ) ] .
ρ ( r , t ) C υ [ / t + υ ( r , t ) / r ] T ( r , t ) = P ( / r + 2 / r ) υ ( r ) ,
R ( / ρ ( 0 ) ) t ,
R s ( t ) = c ( t + t 0 ) ,
ρ ( r , t ) = ρ ( ξ ) ,
υ ( r , t ) = υ ( ξ ) ,
T ( r , t ) = T ( ξ ) ,
ξ = r / [ c ( t + t 0 ) ] r / R s ( t ) ,
P ( ξ ) ρ 1 ( ξ ) = R g T ( ξ ) ,
d υ ( ξ ) / d ξ = { [ υ ( ξ ) ξ ] 2 κ 1 ( κ 2 1 ) T ( ξ ) } 1 × [ 2 κ 1 ( κ 2 + 1 ) υ ( ξ ) T ξ / ξ ] ,
d T ( ξ ) / d ξ = κ 2 T ( ξ ) [ d υ ( ξ ) / d ξ + 2 υ ( ξ ) / ξ ] / [ υ ( ξ ) ξ ] ,
d ρ ( ξ ) / d ξ = ρ ( ξ ) [ d υ ( ξ ) / d ξ + 2 υ ( ξ ) / ξ ] / [ υ ( ξ ) ξ ] ,
ρ ( ξ ) = ρ ( ξ ) / ρ ( 0 ) ,
T ( ξ ) = T ( ξ ) / T ( 0 ) ,
υ ( ξ ) = υ ( ξ ) / c ,
κ 1 = R g T ( 0 ) / c 2 ,
κ 2 = R g / C υ .
( R g / c 2 ) T ( 1 ) ρ ( 1 ) = 2 / [ T ( 0 ) ( γ + 1 ) ] ( γ 1 ) / [ ( γ + 1 ) R g / T ( 0 ) c 2 ] ,
ρ ( 1 ) = [ ( γ 1 ) / ( γ + 1 ) + T ( 1 ) ] × [ 1 + ( γ 1 ) / ( γ + 1 ) T ( 1 ) ] 1 ,
υ ( 1 ) = 2 [ T ( 1 ) 1 ] / [ γ 1 + ( γ + 1 ) T ( 1 ) ] .

Metrics