Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kogelnik, “Matching of Optical Modes,” Bell Syst. Tech. J. 43, 334 (1964).
  2. Chromatix Application Note 5, “Focussing and Collimation of Gaussian Laser Beams.”
  3. D. B. Rhodes, “Scanning Afocal Laser Velocimeter Projection Lens Systems,” U.S. Patent4,346,990 (31Aug.1982).

1964 (1)

H. Kogelnik, “Matching of Optical Modes,” Bell Syst. Tech. J. 43, 334 (1964).

Kogelnik, H.

H. Kogelnik, “Matching of Optical Modes,” Bell Syst. Tech. J. 43, 334 (1964).

Rhodes, D. B.

D. B. Rhodes, “Scanning Afocal Laser Velocimeter Projection Lens Systems,” U.S. Patent4,346,990 (31Aug.1982).

Bell Syst. Tech. J. (1)

H. Kogelnik, “Matching of Optical Modes,” Bell Syst. Tech. J. 43, 334 (1964).

Other (2)

Chromatix Application Note 5, “Focussing and Collimation of Gaussian Laser Beams.”

D. B. Rhodes, “Scanning Afocal Laser Velocimeter Projection Lens Systems,” U.S. Patent4,346,990 (31Aug.1982).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Beam waist positions in an afocal lens pair: (a) F1 positive focal length; (b) F1 negative focal length.

Fig. 2
Fig. 2

Multiple beam positioning: (a) positive afocal lens pair; (b) negative afocal lens pair.

Fig. 3
Fig. 3

Translation of crossing points (x1 and x2) with translation of lens F0.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

b t = b i f 2 / [ ( d i f ) 2 + ( b i / 2 ) 2 ] ,
d t = f + ( d i f ) f 2 / [ ( d i f ) 2 + ( b i / 2 ) 2 ] .
d 2 + d 3 = f 1 + f 2
d 3 f 2 = ( d 2 f 1 ) .
b 3 = b 2 f 2 2 / [ ( d 2 f 1 ) 2 + ( b 2 / 2 ) 2 ] .
b 1 = b 2 f 1 2 / [ ( d 2 f 1 ) 2 + ( b 2 / 2 ) 2 ] .
b 3 = ( f 2 / f 1 ) 2 b 1 .
d 4 = f 2 ( d 2 f ) f 2 2 / [ ( d 2 f 1 ) 2 + ( b 2 / 2 ) 2 ] .
d 1 = f 1 + ( d 2 f 1 ) f 1 2 / [ ( d 2 f 1 ) 2 + ( b 2 / 2 ) 2 ] .
( d 4 f 2 ) = ( f 2 / f 1 ) 2 ( d 1 f 1 ) .

Metrics