Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Hull, A. F. Stewart, “Laser Beam Profiles: Experiment and Techniques,” Lasers Appl. 4, 71 (1985).
  2. I. M. Winer, “A Self-Calibrating Technique for Measuring Laser Beam Intensity Distributions,” Appl. Opt. 5, 1437 (1966).
    [CrossRef] [PubMed]
  3. D. Milam, “Fluence in 1064-nm Laser Beams: Its Determination by Photography with Polaroid Film,” Appl. Opt. 20, 169 (1981).
    [CrossRef] [PubMed]
  4. Y. Suzaki, A. Tachibana, “Measurement of the μm Sized Radius of Gaussian Laser Beam Using the Scanning Knife-Edge,” Appl. Opt. 14, 2809 (1975).
    [CrossRef] [PubMed]
  5. J. M. Khosrofian, B. A. Garetz, “Measurement of a Gaussian Laser Beam Diameter Through the Direct Inversion of Knife-Edge Data,” Appl. Opt. 22, 3406 (1983).
    [CrossRef] [PubMed]
  6. D. K. Cohen, B. Little, F. S. Luecke, “Techniques for Measuring 1-μm Diam Gaussian Beams,” Appl. Opt. 23, 637 (1984).
    [CrossRef] [PubMed]
  7. P. J. Shayler, “Laser Beam Distribution in the Focal Region,” Appl. Opt. 17, 2673 (1978).
    [CrossRef] [PubMed]
  8. W. L. Smith, A. J. DeGroot, M. J. Weber, “Silicon Vidicon System for Measuring Laser Intensity Profiles,” Appl. Opt. 17, 3938 (1978).
    [CrossRef] [PubMed]
  9. Y. C. Kiang, R. W. Lang, “Measuring Focused Gaussian Beam Spot Sizes: a Practical Method,” Appl. Opt. 22, 1296 (1983).
    [CrossRef] [PubMed]
  10. W. B. Veldkamp, “Laser Beam Profile Shaping with Interlaced Binary Diffraction Gratings,” Appl. Opt. 21, 3209 (1982).
    [CrossRef] [PubMed]
  11. S.M. Sorscher, M. P. Klein, “Profile of a Focused Collimated Laser Beam near the Focal Minimum Characterized by Fluorescence Correlation Spectroscopy,” Rev. Sci. Instrum. 51, 98 (1980).
    [CrossRef]
  12. E. H. A. Granneman, M. J. van der Wiel, “Laser Beam Waist Determination by means of Multiphoton Ionization,” Rev. Sci. Instrum. 46, 332 (1975).
    [CrossRef]
  13. W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal Deflection Spectroscopy and Detection,” Appl. Opt. 20, 1333 (1981).
    [CrossRef] [PubMed]
  14. M. V. Klein, Optics (Wiley, New York, 1970).
  15. A. Rose, R. Vyas, R. Gupta, “Quantitative Investigation of Pulsed Photothermal Deflection Spectroscopy in Flowing Media,” to be published.

1985

D. Hull, A. F. Stewart, “Laser Beam Profiles: Experiment and Techniques,” Lasers Appl. 4, 71 (1985).

1984

1983

1982

1981

1980

S.M. Sorscher, M. P. Klein, “Profile of a Focused Collimated Laser Beam near the Focal Minimum Characterized by Fluorescence Correlation Spectroscopy,” Rev. Sci. Instrum. 51, 98 (1980).
[CrossRef]

1978

1975

E. H. A. Granneman, M. J. van der Wiel, “Laser Beam Waist Determination by means of Multiphoton Ionization,” Rev. Sci. Instrum. 46, 332 (1975).
[CrossRef]

Y. Suzaki, A. Tachibana, “Measurement of the μm Sized Radius of Gaussian Laser Beam Using the Scanning Knife-Edge,” Appl. Opt. 14, 2809 (1975).
[CrossRef] [PubMed]

1966

Amer, N. M.

Boccara, A. C.

Cohen, D. K.

DeGroot, A. J.

Fournier, D.

Garetz, B. A.

Granneman, E. H. A.

E. H. A. Granneman, M. J. van der Wiel, “Laser Beam Waist Determination by means of Multiphoton Ionization,” Rev. Sci. Instrum. 46, 332 (1975).
[CrossRef]

Gupta, R.

A. Rose, R. Vyas, R. Gupta, “Quantitative Investigation of Pulsed Photothermal Deflection Spectroscopy in Flowing Media,” to be published.

Hull, D.

D. Hull, A. F. Stewart, “Laser Beam Profiles: Experiment and Techniques,” Lasers Appl. 4, 71 (1985).

Jackson, W. B.

Khosrofian, J. M.

Kiang, Y. C.

Klein, M. P.

S.M. Sorscher, M. P. Klein, “Profile of a Focused Collimated Laser Beam near the Focal Minimum Characterized by Fluorescence Correlation Spectroscopy,” Rev. Sci. Instrum. 51, 98 (1980).
[CrossRef]

Klein, M. V.

M. V. Klein, Optics (Wiley, New York, 1970).

Lang, R. W.

Little, B.

Luecke, F. S.

Milam, D.

Rose, A.

A. Rose, R. Vyas, R. Gupta, “Quantitative Investigation of Pulsed Photothermal Deflection Spectroscopy in Flowing Media,” to be published.

Shayler, P. J.

Smith, W. L.

Sorscher, S.M.

S.M. Sorscher, M. P. Klein, “Profile of a Focused Collimated Laser Beam near the Focal Minimum Characterized by Fluorescence Correlation Spectroscopy,” Rev. Sci. Instrum. 51, 98 (1980).
[CrossRef]

Stewart, A. F.

D. Hull, A. F. Stewart, “Laser Beam Profiles: Experiment and Techniques,” Lasers Appl. 4, 71 (1985).

Suzaki, Y.

Tachibana, A.

van der Wiel, M. J.

E. H. A. Granneman, M. J. van der Wiel, “Laser Beam Waist Determination by means of Multiphoton Ionization,” Rev. Sci. Instrum. 46, 332 (1975).
[CrossRef]

Veldkamp, W. B.

Vyas, R.

A. Rose, R. Vyas, R. Gupta, “Quantitative Investigation of Pulsed Photothermal Deflection Spectroscopy in Flowing Media,” to be published.

Weber, M. J.

Winer, I. M.

Appl. Opt.

I. M. Winer, “A Self-Calibrating Technique for Measuring Laser Beam Intensity Distributions,” Appl. Opt. 5, 1437 (1966).
[CrossRef] [PubMed]

D. Milam, “Fluence in 1064-nm Laser Beams: Its Determination by Photography with Polaroid Film,” Appl. Opt. 20, 169 (1981).
[CrossRef] [PubMed]

Y. Suzaki, A. Tachibana, “Measurement of the μm Sized Radius of Gaussian Laser Beam Using the Scanning Knife-Edge,” Appl. Opt. 14, 2809 (1975).
[CrossRef] [PubMed]

J. M. Khosrofian, B. A. Garetz, “Measurement of a Gaussian Laser Beam Diameter Through the Direct Inversion of Knife-Edge Data,” Appl. Opt. 22, 3406 (1983).
[CrossRef] [PubMed]

D. K. Cohen, B. Little, F. S. Luecke, “Techniques for Measuring 1-μm Diam Gaussian Beams,” Appl. Opt. 23, 637 (1984).
[CrossRef] [PubMed]

P. J. Shayler, “Laser Beam Distribution in the Focal Region,” Appl. Opt. 17, 2673 (1978).
[CrossRef] [PubMed]

W. L. Smith, A. J. DeGroot, M. J. Weber, “Silicon Vidicon System for Measuring Laser Intensity Profiles,” Appl. Opt. 17, 3938 (1978).
[CrossRef] [PubMed]

Y. C. Kiang, R. W. Lang, “Measuring Focused Gaussian Beam Spot Sizes: a Practical Method,” Appl. Opt. 22, 1296 (1983).
[CrossRef] [PubMed]

W. B. Veldkamp, “Laser Beam Profile Shaping with Interlaced Binary Diffraction Gratings,” Appl. Opt. 21, 3209 (1982).
[CrossRef] [PubMed]

W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal Deflection Spectroscopy and Detection,” Appl. Opt. 20, 1333 (1981).
[CrossRef] [PubMed]

Lasers Appl.

D. Hull, A. F. Stewart, “Laser Beam Profiles: Experiment and Techniques,” Lasers Appl. 4, 71 (1985).

Rev. Sci. Instrum.

S.M. Sorscher, M. P. Klein, “Profile of a Focused Collimated Laser Beam near the Focal Minimum Characterized by Fluorescence Correlation Spectroscopy,” Rev. Sci. Instrum. 51, 98 (1980).
[CrossRef]

E. H. A. Granneman, M. J. van der Wiel, “Laser Beam Waist Determination by means of Multiphoton Ionization,” Rev. Sci. Instrum. 46, 332 (1975).
[CrossRef]

Other

M. V. Klein, Optics (Wiley, New York, 1970).

A. Rose, R. Vyas, R. Gupta, “Quantitative Investigation of Pulsed Photothermal Deflection Spectroscopy in Flowing Media,” to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experiment.

Fig. 2
Fig. 2

Photothermal deflection signal amplitude plotted against the center-to-center distance between the probe and pump beams. The circles are the experimental data points and the solid line has been drawn to guide the eye. The (1/e2) radius of the probe beam used in this investigation was 0.1 mm (as measured by a knife-edge). The inset shows the time-resolved PTD signal.

Fig. 3
Fig. 3

Theoretical PTD signal amplitude plotted against the probe-to-pump beam distance. The dotted curve is calculated from Eq. (6) in this paper, while the solid curve is calculated from Eq. (28) in Jackson et al.13 Pump-beam radius a was assumed to be equal to 0.45 mm in this calculation.

Fig. 4
Fig. 4

Pump beam spatial profile (solid curve) as obtained from numerical integration of the experimental curve in Fig. 2. The dashed curve is a Gaussian function with radius a = 0.47 mm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Q ( r ) = α I ( r ) t 0 ,
T ( r ) = α I ( r ) t 0 ρ C p ,
ϕ ( r ) = 1 n 0 n T path T r d s ,
ϕ ( r ) = l n 0 n T α t 0 ρ C p T ( r ) r .
I ( r ) = 2 E 0 π a 2 t 0 exp ( 2 r 2 / a 2 ) ,
ϕ ( r ) = 1 n 0 n T 4 2 α E 0 ρ C p π a 2 ( r a ) exp ( 2 r 2 / a 2 ) .

Metrics