Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Kirkpatrick, A. V. Baez, “Formation of Optical Images by X-Rays,” J. Opt. Soc. Am. 38, 766 (1948).
  2. J. F. McGee, “A Long-Wavelength X-Ray Reflection Microscope,” in X-Ray Microscopy and Microradiography, V. E. Cosslett, A. Engstrom, H. H. Pattee, Eds. (Academic, New York, 1957), p. 164.
  3. V. E. Cosslett, W. C. Nixon, X-Ray Microscopy, (Cambridge U.P.London, 1960).
  4. F. D. Seward, T. M. Palmieri, “A Simple X-Ray Microscope for Photographing Laser Produced Plasmas,” Rev. Sci. Instrum. 46, 204 (1975);F. Seward, J. Dent, M. Boyle, L. Koppel, T. Harper, P. Stoering, A. Toor, “Calibrated “Four-Color” X-Ray Microscope for Laser Plasma Diagnostics,” Rev. Sci. Instrum. 47, 464 (1976).
  5. T. W. Barbee, “Multilayers for X-Ray Optics,” Proc. Soc. Photo.-Opt. Instrum. Eng. 563, 2 (1985);J. H. Underwood, T. W. Barbee, “Layered Synthetic Microstructures as Bragg Diffractors for X Rays and Extreme Ultraviolet: Theory and Predicted Performance,” Appl. Opt. 20, 3027 (1981).
  6. R. H. Price, “X-Ray Microscopy Using Grazing Incidence Reflection Optics,” AIP Conf. Proc. 75, 189 (1981).
  7. A. E. Rosenbluth, “Reflecting Properties of X-Ray Multilayer Devices,” Ph.D. Thesis, U. Rochester (1983).

1985 (1)

T. W. Barbee, “Multilayers for X-Ray Optics,” Proc. Soc. Photo.-Opt. Instrum. Eng. 563, 2 (1985);J. H. Underwood, T. W. Barbee, “Layered Synthetic Microstructures as Bragg Diffractors for X Rays and Extreme Ultraviolet: Theory and Predicted Performance,” Appl. Opt. 20, 3027 (1981).

1981 (1)

R. H. Price, “X-Ray Microscopy Using Grazing Incidence Reflection Optics,” AIP Conf. Proc. 75, 189 (1981).

1975 (1)

F. D. Seward, T. M. Palmieri, “A Simple X-Ray Microscope for Photographing Laser Produced Plasmas,” Rev. Sci. Instrum. 46, 204 (1975);F. Seward, J. Dent, M. Boyle, L. Koppel, T. Harper, P. Stoering, A. Toor, “Calibrated “Four-Color” X-Ray Microscope for Laser Plasma Diagnostics,” Rev. Sci. Instrum. 47, 464 (1976).

1948 (1)

Baez, A. V.

Barbee, T. W.

T. W. Barbee, “Multilayers for X-Ray Optics,” Proc. Soc. Photo.-Opt. Instrum. Eng. 563, 2 (1985);J. H. Underwood, T. W. Barbee, “Layered Synthetic Microstructures as Bragg Diffractors for X Rays and Extreme Ultraviolet: Theory and Predicted Performance,” Appl. Opt. 20, 3027 (1981).

Cosslett, V. E.

V. E. Cosslett, W. C. Nixon, X-Ray Microscopy, (Cambridge U.P.London, 1960).

Kirkpatrick, P.

McGee, J. F.

J. F. McGee, “A Long-Wavelength X-Ray Reflection Microscope,” in X-Ray Microscopy and Microradiography, V. E. Cosslett, A. Engstrom, H. H. Pattee, Eds. (Academic, New York, 1957), p. 164.

Nixon, W. C.

V. E. Cosslett, W. C. Nixon, X-Ray Microscopy, (Cambridge U.P.London, 1960).

Palmieri, T. M.

F. D. Seward, T. M. Palmieri, “A Simple X-Ray Microscope for Photographing Laser Produced Plasmas,” Rev. Sci. Instrum. 46, 204 (1975);F. Seward, J. Dent, M. Boyle, L. Koppel, T. Harper, P. Stoering, A. Toor, “Calibrated “Four-Color” X-Ray Microscope for Laser Plasma Diagnostics,” Rev. Sci. Instrum. 47, 464 (1976).

Price, R. H.

R. H. Price, “X-Ray Microscopy Using Grazing Incidence Reflection Optics,” AIP Conf. Proc. 75, 189 (1981).

Rosenbluth, A. E.

A. E. Rosenbluth, “Reflecting Properties of X-Ray Multilayer Devices,” Ph.D. Thesis, U. Rochester (1983).

Seward, F. D.

F. D. Seward, T. M. Palmieri, “A Simple X-Ray Microscope for Photographing Laser Produced Plasmas,” Rev. Sci. Instrum. 46, 204 (1975);F. Seward, J. Dent, M. Boyle, L. Koppel, T. Harper, P. Stoering, A. Toor, “Calibrated “Four-Color” X-Ray Microscope for Laser Plasma Diagnostics,” Rev. Sci. Instrum. 47, 464 (1976).

AIP Conf. Proc. (1)

R. H. Price, “X-Ray Microscopy Using Grazing Incidence Reflection Optics,” AIP Conf. Proc. 75, 189 (1981).

J. Opt. Soc. Am. (1)

Proc. Soc. Photo.-Opt. Instrum. Eng. (1)

T. W. Barbee, “Multilayers for X-Ray Optics,” Proc. Soc. Photo.-Opt. Instrum. Eng. 563, 2 (1985);J. H. Underwood, T. W. Barbee, “Layered Synthetic Microstructures as Bragg Diffractors for X Rays and Extreme Ultraviolet: Theory and Predicted Performance,” Appl. Opt. 20, 3027 (1981).

Rev. Sci. Instrum. (1)

F. D. Seward, T. M. Palmieri, “A Simple X-Ray Microscope for Photographing Laser Produced Plasmas,” Rev. Sci. Instrum. 46, 204 (1975);F. Seward, J. Dent, M. Boyle, L. Koppel, T. Harper, P. Stoering, A. Toor, “Calibrated “Four-Color” X-Ray Microscope for Laser Plasma Diagnostics,” Rev. Sci. Instrum. 47, 464 (1976).

Other (3)

J. F. McGee, “A Long-Wavelength X-Ray Reflection Microscope,” in X-Ray Microscopy and Microradiography, V. E. Cosslett, A. Engstrom, H. H. Pattee, Eds. (Academic, New York, 1957), p. 164.

V. E. Cosslett, W. C. Nixon, X-Ray Microscopy, (Cambridge U.P.London, 1960).

A. E. Rosenbluth, “Reflecting Properties of X-Ray Multilayer Devices,” Ph.D. Thesis, U. Rochester (1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the Kirkpatrick-Baez x-ray microscope with multilayer mirrors.

Fig. 2
Fig. 2

Upper, computed reflectivity as a function of glancing angle for the multilayer coatings of the microscope mirrors showing the total reflection region and the first-order Bragg peak. Lower, the Bragg peak is shown on an expanded angular scale. The mirror reflectivities at the CuKα Bragg peak were measured in an x-ray diffractometer and found to be ∼60% of that predicted by the simple multilayer theory, which assumes perfect layers and sharp interfaces.

Fig. 3
Fig. 3

Enlarged image of a 60-bars/mm silver grid using CuKα x rays. Exposure was 10 min on Kodak type 1A film. The 2:1 difference in magnification between the horizontal and vertical directions causes the image to appear as a rectangular grid pattern instead of a square one.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

1 / u 1 + 1 / υ 1 = 2 / R 1 sin θ 1 ; 1 / u 2 + 1 / υ 2 = 2 / R 2 sin θ 2 ,
u 2 = u 1 + s ; υ 2 = υ 1 s ,
2 d 1 sin θ 1 = 2 d 2 sin θ 2 = m λ ,
d 1 R 2 / d 2 R 1 = ( 1 + K ) ( M 1 K ) / M 1 ,
M 1 = K + 1 = 1 / M 2 .

Metrics