Abstract

No abstract available.

Full Article  |  PDF Article

Corrections

Leo K. P. Chan, "Equation of atomic resonance for solid state optics: corrigenda," Appl. Opt. 28, 5208-5208 (1989)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-28-24-5208

References

  • View by:
  • |
  • |
  • |

  1. L. K. P. Chan, “Exact Complex Line Shapes of Atomic Resornance,” Appl. Opt. 23, 3 (1984).
  2. E. H. Kennard, “Zur Quantenmechanik einfacher Bewegungstypen,” Z. Phys. 44, 326 (1927).
  3. F. Bloch, “Zur Theorie des Austauschproblems und der Remanenzerscheinung der Ferromagnetika,” Z. Phys. 74, 295 (1932).
  4. L. D. Landau, E. M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1977), pp. 83–86.
  5. H. Clark, Solid State Physics (Macmillan, London, 1968), pp. 78–120.
  6. F. P. Incropera, Introduction to Molecular Structure and Thermodynamics (Wiley, New York, 1974), pp. 258–260.
  7. A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge U. P., London, 1971), pp. 319–321.
  8. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976), pp. 409–412.
  9. M. Kaivola, O. Poulsen, R. Riis, S. A. Lee, Phys. Rev. Lett. 54, 255 (1985).
  10. A. A. Zaky, R. Hawley, Fundamentals of Electromagnetic Field Theory (George G. Harrap, London, 1974), pp. 147–152.
  11. A. K. Hui, B. H. Armstrong, A. A. Wray, “Rapid Computation of the Voigt and Complex Error Functions,”J. Quant. Spectrosc. Radiat. Transfer 19, 505 (1978).
  12. F. Matter, A. Reichel, “Uniform Computation of the Error Function and Other Related Functions,” Math. Comput. 25, 114 (1971).
  13. V. N. Faddeyeva, N. M. Terentev, Tables of Values of the function w(z)=e−z2 (1+(2i/π) ∫0z et2dt) for Complex Argument (Pergamon, London, 1961).

1985 (1)

M. Kaivola, O. Poulsen, R. Riis, S. A. Lee, Phys. Rev. Lett. 54, 255 (1985).

1984 (1)

L. K. P. Chan, “Exact Complex Line Shapes of Atomic Resornance,” Appl. Opt. 23, 3 (1984).

1978 (1)

A. K. Hui, B. H. Armstrong, A. A. Wray, “Rapid Computation of the Voigt and Complex Error Functions,”J. Quant. Spectrosc. Radiat. Transfer 19, 505 (1978).

1971 (1)

F. Matter, A. Reichel, “Uniform Computation of the Error Function and Other Related Functions,” Math. Comput. 25, 114 (1971).

1932 (1)

F. Bloch, “Zur Theorie des Austauschproblems und der Remanenzerscheinung der Ferromagnetika,” Z. Phys. 74, 295 (1932).

1927 (1)

E. H. Kennard, “Zur Quantenmechanik einfacher Bewegungstypen,” Z. Phys. 44, 326 (1927).

Armstrong, B. H.

A. K. Hui, B. H. Armstrong, A. A. Wray, “Rapid Computation of the Voigt and Complex Error Functions,”J. Quant. Spectrosc. Radiat. Transfer 19, 505 (1978).

Bloch, F.

F. Bloch, “Zur Theorie des Austauschproblems und der Remanenzerscheinung der Ferromagnetika,” Z. Phys. 74, 295 (1932).

Chan, L. K. P.

L. K. P. Chan, “Exact Complex Line Shapes of Atomic Resornance,” Appl. Opt. 23, 3 (1984).

Clark, H.

H. Clark, Solid State Physics (Macmillan, London, 1968), pp. 78–120.

Faddeyeva, V. N.

V. N. Faddeyeva, N. M. Terentev, Tables of Values of the function w(z)=e−z2 (1+(2i/π) ∫0z et2dt) for Complex Argument (Pergamon, London, 1961).

Hawley, R.

A. A. Zaky, R. Hawley, Fundamentals of Electromagnetic Field Theory (George G. Harrap, London, 1974), pp. 147–152.

Hui, A. K.

A. K. Hui, B. H. Armstrong, A. A. Wray, “Rapid Computation of the Voigt and Complex Error Functions,”J. Quant. Spectrosc. Radiat. Transfer 19, 505 (1978).

Incropera, F. P.

F. P. Incropera, Introduction to Molecular Structure and Thermodynamics (Wiley, New York, 1974), pp. 258–260.

Kaivola, M.

M. Kaivola, O. Poulsen, R. Riis, S. A. Lee, Phys. Rev. Lett. 54, 255 (1985).

Kennard, E. H.

E. H. Kennard, “Zur Quantenmechanik einfacher Bewegungstypen,” Z. Phys. 44, 326 (1927).

Kittel, C.

C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976), pp. 409–412.

Landau, L. D.

L. D. Landau, E. M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1977), pp. 83–86.

Lee, S. A.

M. Kaivola, O. Poulsen, R. Riis, S. A. Lee, Phys. Rev. Lett. 54, 255 (1985).

Lifshitz, E. M.

L. D. Landau, E. M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1977), pp. 83–86.

Matter, F.

F. Matter, A. Reichel, “Uniform Computation of the Error Function and Other Related Functions,” Math. Comput. 25, 114 (1971).

Mitchell, A. C. G.

A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge U. P., London, 1971), pp. 319–321.

Poulsen, O.

M. Kaivola, O. Poulsen, R. Riis, S. A. Lee, Phys. Rev. Lett. 54, 255 (1985).

Reichel, A.

F. Matter, A. Reichel, “Uniform Computation of the Error Function and Other Related Functions,” Math. Comput. 25, 114 (1971).

Riis, R.

M. Kaivola, O. Poulsen, R. Riis, S. A. Lee, Phys. Rev. Lett. 54, 255 (1985).

Terentev, N. M.

V. N. Faddeyeva, N. M. Terentev, Tables of Values of the function w(z)=e−z2 (1+(2i/π) ∫0z et2dt) for Complex Argument (Pergamon, London, 1961).

Wray, A. A.

A. K. Hui, B. H. Armstrong, A. A. Wray, “Rapid Computation of the Voigt and Complex Error Functions,”J. Quant. Spectrosc. Radiat. Transfer 19, 505 (1978).

Zaky, A. A.

A. A. Zaky, R. Hawley, Fundamentals of Electromagnetic Field Theory (George G. Harrap, London, 1974), pp. 147–152.

Zemansky, M. W.

A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge U. P., London, 1971), pp. 319–321.

Appl. Opt. (1)

L. K. P. Chan, “Exact Complex Line Shapes of Atomic Resornance,” Appl. Opt. 23, 3 (1984).

J. Quant. Spectrosc. Radiat. Transfer (1)

A. K. Hui, B. H. Armstrong, A. A. Wray, “Rapid Computation of the Voigt and Complex Error Functions,”J. Quant. Spectrosc. Radiat. Transfer 19, 505 (1978).

Math. Comput. (1)

F. Matter, A. Reichel, “Uniform Computation of the Error Function and Other Related Functions,” Math. Comput. 25, 114 (1971).

Phys. Rev. Lett. (1)

M. Kaivola, O. Poulsen, R. Riis, S. A. Lee, Phys. Rev. Lett. 54, 255 (1985).

Z. Phys. (2)

E. H. Kennard, “Zur Quantenmechanik einfacher Bewegungstypen,” Z. Phys. 44, 326 (1927).

F. Bloch, “Zur Theorie des Austauschproblems und der Remanenzerscheinung der Ferromagnetika,” Z. Phys. 74, 295 (1932).

Other (7)

L. D. Landau, E. M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1977), pp. 83–86.

H. Clark, Solid State Physics (Macmillan, London, 1968), pp. 78–120.

F. P. Incropera, Introduction to Molecular Structure and Thermodynamics (Wiley, New York, 1974), pp. 258–260.

A. C. G. Mitchell, M. W. Zemansky, Resonance Radiation and Excited Atoms (Cambridge U. P., London, 1971), pp. 319–321.

C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976), pp. 409–412.

A. A. Zaky, R. Hawley, Fundamentals of Electromagnetic Field Theory (George G. Harrap, London, 1974), pp. 147–152.

V. N. Faddeyeva, N. M. Terentev, Tables of Values of the function w(z)=e−z2 (1+(2i/π) ∫0z et2dt) for Complex Argument (Pergamon, London, 1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Wavelength dependence of κ as given by Eq. (4).

Fig. 2
Fig. 2

Wavelength dependence of n − 1 as given by Eq. (4).

Fig. 3
Fig. 3

Variations of the real and imaginary components of the complex error function with its dimensionless parameters u and a.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d η p = ( ξ / 2 π kMT ) 1 / 2 [ exp ( ξ p 2 / 2 kMT ) ] d p ,
u r = 2 ( ξ ln 2 ) 1 / 2 [ ν ν u ( r ) l ] / γ D , y r = 2 ( ξ ln 2 ) 1 / 2 [ ν * ν u ( r ) l ] / γ D , a r = ( ξ ln 2 ) 1 / 2 γ L / γ D ,
d N = ( N / π 1 / 2 ) [ exp ( y r 2 ) ] d y r .
( ñ 2 / μ * ) 1 ( ñ 2 / μ * ) + 2 = 2 3 ( n 0 1 ) r C r [ 1 π ( u r y r ) exp ( y r 2 ) ( u r y r ) 2 a r 2 d y r + i a r π exp ( y r 2 ) ( u r y r ) 2 a r 2 d y r ] ,
C r = π 1 / 2 N l e 2 f r a r b 12 π 2 m * 0 γ L ν u ( r ) l [ 1 N u ( r ) g l N l g u ( r ) ] = m m * r e c 2 3 π 1 / 2 f r a r b γ L ν u ( r ) l N l [ 1 N u ( r ) g l N l g u ( r ) ] ,
( ñ 2 / μ * ) 1 ( ñ 2 / μ * ) + 2 = N α e 3 0 = 2 3 ( n 0 1 ) i r C r W ¯ ( Z r ) ,
α e
is the total complex electronic polarizability = α e i α e .

Metrics