Abstract

The design of an optical logic parallel processor is described. The central component is a Fabry-Perot cavity, filled with a nonlinear layer and a linear anisotropic layer, such as a sheet of mica. The two logic states are represented by two orthogonal states of the polarization of the light beam. Polarization logic, compared with on/off logic (bright or dark), requires less power, generates less heat, and is better suited for cascading.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. P. Feynman, “Quantum Mechanical Computers,” Opt. News 11, 11 (1985).
    [CrossRef]
  2. B. Watrasiewicz, “Optical Digital Computers,” Opt. Laser Technol. 7, 213 (1975).
    [CrossRef]
  3. Y. C. Chen, J. M. Liu, Appl. Phys. Lett. 45, 6 (1984);J. M. Liu, Y. C. Chen, “Optical Logic and Memory Functions Based on Polarization Bistable Semiconductor Lasers,” paper MC3 in Optical Computing, Technical Digest, OSA Topical Meeting, Lake Tahoe, Spring1985.
  4. A. W. Lohmann, “What Classical Optics Can Do for the Digital Optical Computer,” Appl. Opt. 25, 1543 (1986).
    [CrossRef] [PubMed]
  5. A. Korpel, A. W. Lohmann, “Polarization and Optical Bistability,” Appl. Opt. 25, 1528 (1986).
    [CrossRef] [PubMed]

1986 (2)

1985 (1)

R. P. Feynman, “Quantum Mechanical Computers,” Opt. News 11, 11 (1985).
[CrossRef]

1984 (1)

Y. C. Chen, J. M. Liu, Appl. Phys. Lett. 45, 6 (1984);J. M. Liu, Y. C. Chen, “Optical Logic and Memory Functions Based on Polarization Bistable Semiconductor Lasers,” paper MC3 in Optical Computing, Technical Digest, OSA Topical Meeting, Lake Tahoe, Spring1985.

1975 (1)

B. Watrasiewicz, “Optical Digital Computers,” Opt. Laser Technol. 7, 213 (1975).
[CrossRef]

Chen, Y. C.

Y. C. Chen, J. M. Liu, Appl. Phys. Lett. 45, 6 (1984);J. M. Liu, Y. C. Chen, “Optical Logic and Memory Functions Based on Polarization Bistable Semiconductor Lasers,” paper MC3 in Optical Computing, Technical Digest, OSA Topical Meeting, Lake Tahoe, Spring1985.

Feynman, R. P.

R. P. Feynman, “Quantum Mechanical Computers,” Opt. News 11, 11 (1985).
[CrossRef]

Korpel, A.

Liu, J. M.

Y. C. Chen, J. M. Liu, Appl. Phys. Lett. 45, 6 (1984);J. M. Liu, Y. C. Chen, “Optical Logic and Memory Functions Based on Polarization Bistable Semiconductor Lasers,” paper MC3 in Optical Computing, Technical Digest, OSA Topical Meeting, Lake Tahoe, Spring1985.

Lohmann, A. W.

Watrasiewicz, B.

B. Watrasiewicz, “Optical Digital Computers,” Opt. Laser Technol. 7, 213 (1975).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Y. C. Chen, J. M. Liu, Appl. Phys. Lett. 45, 6 (1984);J. M. Liu, Y. C. Chen, “Optical Logic and Memory Functions Based on Polarization Bistable Semiconductor Lasers,” paper MC3 in Optical Computing, Technical Digest, OSA Topical Meeting, Lake Tahoe, Spring1985.

Opt. Laser Technol. (1)

B. Watrasiewicz, “Optical Digital Computers,” Opt. Laser Technol. 7, 213 (1975).
[CrossRef]

Opt. News (1)

R. P. Feynman, “Quantum Mechanical Computers,” Opt. News 11, 11 (1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Central component: a modified Fabry-Perot cavity with a nonlinear layer and an anisotropic layer inside. The Fabry-Perot resonances occur at different input levels for the two polarizations.

Fig. 2
Fig. 2

Black box representation of the logic processor based on polarization optics: add, addition of the two polarized input fields A(x,y) and B(x,y); FP, the component shown in Fig. 1; logic distr, the logic operation takes place by redistributing and polarization-switching the four outputs from FP.

Fig. 3
Fig. 3

Device for adding the two polarized input data arrays A and B.

Fig. 4
Fig. 4

Parts for the implementation of logic distr, consisting of lenses, mirrors, halfwave plates H, and polarization beam splitters PBS.

Fig. 5
Fig. 5

Polarization spatial light modulator with a binary power field Ao as input and a polarized field Ax,Ay as output.

Tables (1)

Tables Icon

Table I Data Flow Through the Processor

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

A NOR B = D .
I 2 = 2 D x ,
J 1 + J 2 = 2 D y .
A x + B x = I x ,
A y + B y = I y .
A x + B x + A y + B y = 2 D x + 2 D y = 2 .
D x = D y ; D y = D x : NOR OR .
A x = A y ; A y = A x ; B x = B y ; B y = B x : NOR AND ,
NOR AND ; ( D x = D y ; D y = D x ) AND NAND .
NOR + AND = EQU = NXOR ,
NEG ( EQU ) = XOR .

Metrics