Abstract

This paper presents new results and reviews the latest state of research in all-optical nonlinear logic switches, amplifiers, and memories. Optical circuit elements that perform the logic functions of the electronic computer are described. Switching speed on a picosecond time scale, the availability of fast high bandwidth consistent communication, and the application of optical parallelism in free space optical wiring are some advantages of the optical computing elements.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Mead, L. Conway, An Introduction to VLSI Systems (Addison-Wesley, Reading, MA, 1980).
  2. Z. C. P. Lee et al., Technical Digest,IEEE GaAs IC Symposium (IEEE, New York, 1983), p. 162.
  3. A. Huang, “Architectural Considerations Involved in the Design of an Optical Digital Computer,” Proc. IEEE 72, 780 (1984).
    [CrossRef]
  4. J. N. Lee, R. A. Athale, “Optical Implementation of the Triple-Matrix Product,” in Conference Digest, ICO-13, Sapporo (1984), paper A1-6.
  5. A. A. Sawchuk, “Numerical Optical Computing Techniques,”in Conference Digest, ICO-13, Sapporo (1984), paper A1-1.
  6. D. Psaltis, N. Farhat, “A New Approach to Optical Information Processing based on the Hopfield Model,” in Conference Digest, ICO-13, Sapporo (1984), paper A1-9.
  7. J. L. Jewell, A. C. Gossard, W. Wiegmann, “Optical Logic in GaAs Fabry-Perot Etalons,” in Conference Digest, ICO-13, Sapporo (1984), paper A2-3.
  8. S. D. Smith, A. C. Walker, “Optical Bistability and its Application to Computing,” in Conference Digest, ICO-13, Sapporo (1984), paper B5-10.
  9. S. D. Smith, I. Janossy, H. A. MacKenzie, J. G. H. Mathew, J. J. E. Reid, M. R. Taghizadeh, F. A. P. Tooley, A. C. Walker, “Nonlinear Optical Circuit Elements, Logic Gates for Optical Computers: The First Digital Optical Circuits,” Opt. Eng. 24, 4 (1985).
  10. B. S. Wherrett, S. D. Smith, Eds., “Optical Bistability, Dynamical Nonlinearity and Photonic Logic,” Royal Society, London, 1985;also published in Philos. Trans. R. Soc. A313, 191 (1984).
  11. S. Szöke, V. Danue, J. Goldhar, N. A. Kurnit, “Bistable Optical Element and its Applications,” Appl. Phys. Lett. 15, 376 (1969).
    [CrossRef]
  12. H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, “Differential Gain and Bistability using a Sodium-filled Fabry-Perot Interferometer,” Phys. Rev. Lett. 36, 1135 (1976).
    [CrossRef]
  13. D. Weaire, B. S. Wherrett, D. A. B. Miller, S. D. Smith, “Effect of Low-Power Nonlinear Refraction on Laser-Beam Propagation in InSb,” Opt. Lett. 4, 331 (1979).
    [CrossRef] [PubMed]
  14. D. A. B. Miller, M. H. Mozolowski, A. Miller, S. D. Smith, “Nonlinear Optical Effects in InSb with a c.w. CO Laser,” Opt. Commun. 27, 133 (1978).
    [CrossRef]
  15. T. Scragg, S. D. Smith, “External Cavity Operation of the Spin-Flip Raman Laser,” Opt. Commun. 15, 188 (1975).
    [CrossRef]
  16. C. N. Ironside, “The Spin Flip Laser Spectrometer and Aspects of the Nonlinear Optics in InSb,” Ph.D. Thesis, Heriot-Watt U., Edinburgh (unpublished) (1979).
  17. D. A. B. Miller, S. D. Smith, A. Johnston, “Optical Bistability and Signal Amplification in a Semiconductor Crystal: Applications of New Low-power Nonlinear Effects in InSb,” Appl. Phys. Lett. 35, 658 (1979).
    [CrossRef]
  18. D. A. B. Miller, S. D. Smith, “Two Beam Optical Amplification and Bistability in InSb,” Opt. Commun. 31, 101 (1979).
    [CrossRef]
  19. H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, W. Wiegmann, “Optical Bistability in Semiconductors,” Appl. Phys. Lett. 36, 6 (1979).
  20. D. A. B. Miller, S. D. Smith, B. S. Wherrett, “The Microscopic Mechanism of Third-Order Optical Nonlinearity in InSb,” Opt. Commun. 35, 2 (1980);D. A. B. Miller, C. T. Seaton, M. E. Prise, S. D. Smith, “Band-Gap-Resonant Nonlinear Refraction in III–V Semiconductors,” Phys. Rev. Lett. 47, 197 (1981).
    [CrossRef]
  21. A. C. Walker, F. A. P. Tooley, M. E. Prise, J. G. H. Mathew, A. K. Kar, M. R. Taghizadeh, S. D. Smith, “InSb Devices: Transphasors with High Gain, Bistable Switches and Sequential Logica Gates,” in Proceedings, Optical Bistability, Dynamical Nonlinearity and Photonic Logic;also published as Philos. Trans. R. Soc. London A313, 249 (1984).
  22. B. S. Wherrett, F. A. P. Tooley, S. D. Smith, “Absorption Switching and Bistability in InSb,” Opt. Commun. 52, 4 (1984).
    [CrossRef]
  23. A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, W. Prettl, “Optical Bistability in InSb at Room Temperature with Two-Photon Excitation,” Appl. Phys. Lett. 42, 4 (1983).
    [CrossRef]
  24. H. M. Gibbs et al., “Semiconductor Nonlinear Etalons,” in Proceedings, Optical Bistability, Dynamical Nonlinearity and Photonic Logic;Philos. Trans. R. Soc. London A 313, 245 (1984).
  25. D. A. B. Miller, A. C. Gossard, W. Wiegmann, “Optical Bistability due to Increasing Absorption,” Opt. Lett. 9, 162 (1984).
    [CrossRef] [PubMed]
  26. M. Dagenais, W. F. Sharfin, “Picojoule, Subnanosecond, All-optical Switching using Bound Excitons in CdS,” Appl. Phys. Lett. 46, 3 (1985).
    [CrossRef]
  27. K. Bohnert, H. Kalt, C. Klingshirn, “Intrinsic Absorptive Optical Bistability in CdS,” Appl. Phys. Lett. 43, 12 (1983).
    [CrossRef]
  28. M. Dagenais, W. F. Sharfin, “Cavityless Optical Bistability due to Light-Induced Absorption in Cadmium Sulphide,” Appl. Phys. Lett. 45, 3 (1984).
    [CrossRef]
  29. A. Miller, G. Parry, R. Daley, “Low-Power Nonlinear Fabry-Perot Reflection in CdHgTe at 10 /am,” IEEE J. Quantum Electron. QE-20, 7 (1984).
  30. J. G. H. Mathew, D. Craig, A. Miller, “Optical Switching in CdHgTe Etalon at Room Temperature,” Appl. Phys. Lett. 46, 2 (1985).
    [CrossRef]
  31. C. D. Poole, E. Garmire, “Optical Bistability at the Bandgap in InSb,” Appl. Phys. Lett. 44, 4 (1984).
    [CrossRef]
  32. N. Peyghambarian, H. M. Gibbs, M. C. Rushford, D. A. Weinberger, “Observation of Biexcitonic Optical Bistability and Optical Limiting in CuCl,” Phys. Rev. Lett. 51, 16 (1983);R. Levy, J. Y. Bigot, B. Hönerlage, F. Tomasini, J. B. Grun, “Optical Bistability due to Biexcitons in CuCl,” Solid State Commun. 48, 8 (1983).
    [CrossRef]
  33. G. Staupendahl, K. Schindler, “A New Optical-Optical Modulator,” Opt. Quantum Electron. 14, 157 (1982).
    [CrossRef]
  34. H. J. Eichler, “Optical Multistability in Silicon observed with a cw Laser at 1.06 μm”Opt. Commun. 45, 1 (1983).
    [CrossRef]
  35. J. Hajto, I. Janossy, “Optical Bistability observed in Amorphous Semiconductor Films,” Philos. Mag. B 47, 4 (1983).
  36. S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A. C. Walker, B. S. Wherrett, A. Hendry, “Room Temperature, Visible Wavelength Optical Bistability in ZnSe Interference Filters,” Opt. Commun. 51, 357 (1984).
    [CrossRef]
  37. M. R. Taghizadeh, I. Janossy, S. D. Smith, “Optical Bistability in Bulk ZnSe due to Increasing Absorption and Self-Focussing,” Appl. Phys. Lett. 45, 4 (1985).
  38. F. V. Karpuskho, G. V. Sinitsyn, “An Optical Logic Element for Integrated Optics in a Nonlinear Semiconductor Interferometer,” J. Appl. Spectrosc. USSR 29, 1323 (1978).
    [CrossRef]
  39. T. N. C. Venkatesan, S. L. McCall, “Optical Bistability and Differential Gain between 85 and 296°K in a Fabry-Perot Containing Ruby,” Appl. Phys. Lett. 30, 282 (1977).
    [CrossRef]
  40. J-W Song, S.-Y. Shin, Y-S. Kwon, “Optical Bistability, Regenerative Oscillation, and Monostable Pulse Generation in a Liquid Crystal Bistable Optical Device,” Appl. Opt. 23, 1521 (1984).
    [CrossRef] [PubMed]
  41. D. Grischowsky, “Nonlinear Fabry-Perot Interferometer with Subnanosecond Response Times,” J. Opt. Soc. Am. 68, 641 (1978).
  42. S. L. McCall, H. M. Gibbs, “Optical Bistability via Thermal Effects in a Glass Filter,” J. Opt. Soc. Am. 68, 378 (1978).
  43. T. Bischofberger, Y. R. Shen, “Transient Behaviour of a Nonlinear Fabry-Perot,” Appl. Phys. Lett. 32, 156 (1978);“Nonlinear Fabry-Perot Filled with CS2 and Nitrobenzene,” Opt. Lett. 4, 40 (1979);“Nonlinear Fabry-Perot Filled with CS2 and Nitrobenzene (Errata),” Opt. Lett. 4, 175 (1979).
    [CrossRef] [PubMed]
  44. J. L. Jewell, M. C. Rushford, H. M. Gibbs, “Use of a Single Nonlinear Fabry-Perot Etalon as Optical Logic Gates,” Appl. Phys. Lett. 43, 2, 1975 (1984).
  45. R. G. Harrison, I. A. Al-Saidi, E. J. D. Cummins, W. J. Firth, “Evidence for Optical Bistability in Millimeter Gas Cells,” Appl. Phys. Lett. 46, 532 (1985).
    [CrossRef]
  46. R. G. Harrison, W. J. Firth, C. A. Emshary, I. A. Al-Saidi, “Observation of Optical Hysteresis in an All-Optical Passive Ring Cavity Containing Molecular Gas,” Appl. Phys. Lett. 44, 716 (1984).
    [CrossRef]
  47. B. S. Wherrett, “A Comparison of Theories of Resonant Nonlinear Refraction in Semiconductors,” Proc. R. Soc. London A 390, 373 (1983).
    [CrossRef]
  48. B. S. Wherrett, “One Electron Theory of Nonlinear Refraction,” in Proceedings, Optical Bistability, Dynamical Nonlinearity and Photonic Logic, Philos. Trans. R. Soc. London A 313, 213 (1984).
    [CrossRef]
  49. A. Miller, G. Parry, R. Daley, “Optical Bistability in Semiconductors with Density dependent Carrier Lifetimes,” Opt. Quantum Electron. 16, 339 (1984).
    [CrossRef]
  50. D. A. B. Miller, “Refractive Fabry-Perot Bistability with Linear Absorption,” IEEE J. Quantum Electron. QE-17, 3(1981).
  51. B. S. Wherrett, D. Hutchings, D. Russels, Heriot-Watt U.; private communication (1985).
  52. B. S. Wherrett, “Fabry-Perot Bistable Cavity Optimisation,” IEEE J. Quantum Electron. QE-20, 646 (1984).
    [CrossRef]
  53. C. T. Seaton, S. D. Smith, F. A. P. Tooley, M. E. Prise, M. R. Taghizadeh, “The Realization of an InSb Bistable Device as an Optical and Gate and its use to measure Carrier Recombination Times,” Appl. Phys. Lett. 42, 131 (1983).
    [CrossRef]
  54. T. Elsaesser, H. Lobentanzer, W. Kaiser, “Self-Defocusing and Self-Phase Modulation in InSb measured with Picosecond Infrared Pulses,” Appl. Phys. Lett. 47, 11 (1985).
    [CrossRef]
  55. A. Migus, A. Antoneti, D. Hulin, A. Mysyrowscly, H. M. Gibbs, N. Peyghambarian, J. L. Jewell, “One-picosecond Optical NOR Gate at Room Temperature with a GaAs-AlGaAs Multiple-quantum-well Nonlinear Fabry-Perot Etalon,” Appl. Phys. Lett. 46, 1 (1985).
    [CrossRef]
  56. F. A. P. Tooley, S. D. Smith, C. T. Seaton, “High Gain Signal Amplification in an InSb Transphasor at 77 K,” Appl. Phys. 43, 9 (1983).
  57. F. A. P. Tooley, W. J. Firth, A. C. Walker, H. A. MacKenzie, J. J. E. Reid, S. D. Smith, “Measurement of the Bandwidth of an Optical Transphasor,” IEEE QE-21, 1356 (1985)
  58. G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. van Milligen, “Micro-second Room-temperature Optical Bistability and Crosstalk Studies in ZnS and ZnSe Interference Filters with Visible Light and Milliwatt Powers,” Appl. Phys. Lett. 45, 10 (1984).
    [CrossRef]
  59. S. P. Apanasevich, F. V. Karpushko, G. V. Sinitsyn, “Response Time of Bistable Devices Based on Evaporated Thin-Film Interferometers,” Sov. J. Quantum Electron. 14, 873 (1984).
    [CrossRef]
  60. I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally Induced Optical Bistability in Thin Film Devices,” IEEE QE-21, 9 (1985).
  61. B. S. Wherrett, “All-Optical Computation: a Design for Tackling a Specific Physical Problem,” Appl. Opt. 24, (1985).
    [CrossRef] [PubMed]

1985 (10)

S. D. Smith, I. Janossy, H. A. MacKenzie, J. G. H. Mathew, J. J. E. Reid, M. R. Taghizadeh, F. A. P. Tooley, A. C. Walker, “Nonlinear Optical Circuit Elements, Logic Gates for Optical Computers: The First Digital Optical Circuits,” Opt. Eng. 24, 4 (1985).

M. Dagenais, W. F. Sharfin, “Picojoule, Subnanosecond, All-optical Switching using Bound Excitons in CdS,” Appl. Phys. Lett. 46, 3 (1985).
[CrossRef]

J. G. H. Mathew, D. Craig, A. Miller, “Optical Switching in CdHgTe Etalon at Room Temperature,” Appl. Phys. Lett. 46, 2 (1985).
[CrossRef]

M. R. Taghizadeh, I. Janossy, S. D. Smith, “Optical Bistability in Bulk ZnSe due to Increasing Absorption and Self-Focussing,” Appl. Phys. Lett. 45, 4 (1985).

R. G. Harrison, I. A. Al-Saidi, E. J. D. Cummins, W. J. Firth, “Evidence for Optical Bistability in Millimeter Gas Cells,” Appl. Phys. Lett. 46, 532 (1985).
[CrossRef]

T. Elsaesser, H. Lobentanzer, W. Kaiser, “Self-Defocusing and Self-Phase Modulation in InSb measured with Picosecond Infrared Pulses,” Appl. Phys. Lett. 47, 11 (1985).
[CrossRef]

A. Migus, A. Antoneti, D. Hulin, A. Mysyrowscly, H. M. Gibbs, N. Peyghambarian, J. L. Jewell, “One-picosecond Optical NOR Gate at Room Temperature with a GaAs-AlGaAs Multiple-quantum-well Nonlinear Fabry-Perot Etalon,” Appl. Phys. Lett. 46, 1 (1985).
[CrossRef]

F. A. P. Tooley, W. J. Firth, A. C. Walker, H. A. MacKenzie, J. J. E. Reid, S. D. Smith, “Measurement of the Bandwidth of an Optical Transphasor,” IEEE QE-21, 1356 (1985)

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally Induced Optical Bistability in Thin Film Devices,” IEEE QE-21, 9 (1985).

B. S. Wherrett, “All-Optical Computation: a Design for Tackling a Specific Physical Problem,” Appl. Opt. 24, (1985).
[CrossRef] [PubMed]

1984 (15)

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. van Milligen, “Micro-second Room-temperature Optical Bistability and Crosstalk Studies in ZnS and ZnSe Interference Filters with Visible Light and Milliwatt Powers,” Appl. Phys. Lett. 45, 10 (1984).
[CrossRef]

S. P. Apanasevich, F. V. Karpushko, G. V. Sinitsyn, “Response Time of Bistable Devices Based on Evaporated Thin-Film Interferometers,” Sov. J. Quantum Electron. 14, 873 (1984).
[CrossRef]

B. S. Wherrett, “One Electron Theory of Nonlinear Refraction,” in Proceedings, Optical Bistability, Dynamical Nonlinearity and Photonic Logic, Philos. Trans. R. Soc. London A 313, 213 (1984).
[CrossRef]

A. Miller, G. Parry, R. Daley, “Optical Bistability in Semiconductors with Density dependent Carrier Lifetimes,” Opt. Quantum Electron. 16, 339 (1984).
[CrossRef]

B. S. Wherrett, “Fabry-Perot Bistable Cavity Optimisation,” IEEE J. Quantum Electron. QE-20, 646 (1984).
[CrossRef]

R. G. Harrison, W. J. Firth, C. A. Emshary, I. A. Al-Saidi, “Observation of Optical Hysteresis in an All-Optical Passive Ring Cavity Containing Molecular Gas,” Appl. Phys. Lett. 44, 716 (1984).
[CrossRef]

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A. C. Walker, B. S. Wherrett, A. Hendry, “Room Temperature, Visible Wavelength Optical Bistability in ZnSe Interference Filters,” Opt. Commun. 51, 357 (1984).
[CrossRef]

J. L. Jewell, M. C. Rushford, H. M. Gibbs, “Use of a Single Nonlinear Fabry-Perot Etalon as Optical Logic Gates,” Appl. Phys. Lett. 43, 2, 1975 (1984).

J-W Song, S.-Y. Shin, Y-S. Kwon, “Optical Bistability, Regenerative Oscillation, and Monostable Pulse Generation in a Liquid Crystal Bistable Optical Device,” Appl. Opt. 23, 1521 (1984).
[CrossRef] [PubMed]

C. D. Poole, E. Garmire, “Optical Bistability at the Bandgap in InSb,” Appl. Phys. Lett. 44, 4 (1984).
[CrossRef]

M. Dagenais, W. F. Sharfin, “Cavityless Optical Bistability due to Light-Induced Absorption in Cadmium Sulphide,” Appl. Phys. Lett. 45, 3 (1984).
[CrossRef]

A. Miller, G. Parry, R. Daley, “Low-Power Nonlinear Fabry-Perot Reflection in CdHgTe at 10 /am,” IEEE J. Quantum Electron. QE-20, 7 (1984).

B. S. Wherrett, F. A. P. Tooley, S. D. Smith, “Absorption Switching and Bistability in InSb,” Opt. Commun. 52, 4 (1984).
[CrossRef]

D. A. B. Miller, A. C. Gossard, W. Wiegmann, “Optical Bistability due to Increasing Absorption,” Opt. Lett. 9, 162 (1984).
[CrossRef] [PubMed]

A. Huang, “Architectural Considerations Involved in the Design of an Optical Digital Computer,” Proc. IEEE 72, 780 (1984).
[CrossRef]

1983 (8)

A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, W. Prettl, “Optical Bistability in InSb at Room Temperature with Two-Photon Excitation,” Appl. Phys. Lett. 42, 4 (1983).
[CrossRef]

K. Bohnert, H. Kalt, C. Klingshirn, “Intrinsic Absorptive Optical Bistability in CdS,” Appl. Phys. Lett. 43, 12 (1983).
[CrossRef]

N. Peyghambarian, H. M. Gibbs, M. C. Rushford, D. A. Weinberger, “Observation of Biexcitonic Optical Bistability and Optical Limiting in CuCl,” Phys. Rev. Lett. 51, 16 (1983);R. Levy, J. Y. Bigot, B. Hönerlage, F. Tomasini, J. B. Grun, “Optical Bistability due to Biexcitons in CuCl,” Solid State Commun. 48, 8 (1983).
[CrossRef]

H. J. Eichler, “Optical Multistability in Silicon observed with a cw Laser at 1.06 μm”Opt. Commun. 45, 1 (1983).
[CrossRef]

J. Hajto, I. Janossy, “Optical Bistability observed in Amorphous Semiconductor Films,” Philos. Mag. B 47, 4 (1983).

B. S. Wherrett, “A Comparison of Theories of Resonant Nonlinear Refraction in Semiconductors,” Proc. R. Soc. London A 390, 373 (1983).
[CrossRef]

C. T. Seaton, S. D. Smith, F. A. P. Tooley, M. E. Prise, M. R. Taghizadeh, “The Realization of an InSb Bistable Device as an Optical and Gate and its use to measure Carrier Recombination Times,” Appl. Phys. Lett. 42, 131 (1983).
[CrossRef]

F. A. P. Tooley, S. D. Smith, C. T. Seaton, “High Gain Signal Amplification in an InSb Transphasor at 77 K,” Appl. Phys. 43, 9 (1983).

1982 (1)

G. Staupendahl, K. Schindler, “A New Optical-Optical Modulator,” Opt. Quantum Electron. 14, 157 (1982).
[CrossRef]

1981 (1)

D. A. B. Miller, “Refractive Fabry-Perot Bistability with Linear Absorption,” IEEE J. Quantum Electron. QE-17, 3(1981).

1980 (1)

D. A. B. Miller, S. D. Smith, B. S. Wherrett, “The Microscopic Mechanism of Third-Order Optical Nonlinearity in InSb,” Opt. Commun. 35, 2 (1980);D. A. B. Miller, C. T. Seaton, M. E. Prise, S. D. Smith, “Band-Gap-Resonant Nonlinear Refraction in III–V Semiconductors,” Phys. Rev. Lett. 47, 197 (1981).
[CrossRef]

1979 (4)

D. Weaire, B. S. Wherrett, D. A. B. Miller, S. D. Smith, “Effect of Low-Power Nonlinear Refraction on Laser-Beam Propagation in InSb,” Opt. Lett. 4, 331 (1979).
[CrossRef] [PubMed]

D. A. B. Miller, S. D. Smith, A. Johnston, “Optical Bistability and Signal Amplification in a Semiconductor Crystal: Applications of New Low-power Nonlinear Effects in InSb,” Appl. Phys. Lett. 35, 658 (1979).
[CrossRef]

D. A. B. Miller, S. D. Smith, “Two Beam Optical Amplification and Bistability in InSb,” Opt. Commun. 31, 101 (1979).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, W. Wiegmann, “Optical Bistability in Semiconductors,” Appl. Phys. Lett. 36, 6 (1979).

1978 (5)

D. A. B. Miller, M. H. Mozolowski, A. Miller, S. D. Smith, “Nonlinear Optical Effects in InSb with a c.w. CO Laser,” Opt. Commun. 27, 133 (1978).
[CrossRef]

F. V. Karpuskho, G. V. Sinitsyn, “An Optical Logic Element for Integrated Optics in a Nonlinear Semiconductor Interferometer,” J. Appl. Spectrosc. USSR 29, 1323 (1978).
[CrossRef]

D. Grischowsky, “Nonlinear Fabry-Perot Interferometer with Subnanosecond Response Times,” J. Opt. Soc. Am. 68, 641 (1978).

S. L. McCall, H. M. Gibbs, “Optical Bistability via Thermal Effects in a Glass Filter,” J. Opt. Soc. Am. 68, 378 (1978).

T. Bischofberger, Y. R. Shen, “Transient Behaviour of a Nonlinear Fabry-Perot,” Appl. Phys. Lett. 32, 156 (1978);“Nonlinear Fabry-Perot Filled with CS2 and Nitrobenzene,” Opt. Lett. 4, 40 (1979);“Nonlinear Fabry-Perot Filled with CS2 and Nitrobenzene (Errata),” Opt. Lett. 4, 175 (1979).
[CrossRef] [PubMed]

1977 (1)

T. N. C. Venkatesan, S. L. McCall, “Optical Bistability and Differential Gain between 85 and 296°K in a Fabry-Perot Containing Ruby,” Appl. Phys. Lett. 30, 282 (1977).
[CrossRef]

1976 (1)

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, “Differential Gain and Bistability using a Sodium-filled Fabry-Perot Interferometer,” Phys. Rev. Lett. 36, 1135 (1976).
[CrossRef]

1975 (1)

T. Scragg, S. D. Smith, “External Cavity Operation of the Spin-Flip Raman Laser,” Opt. Commun. 15, 188 (1975).
[CrossRef]

1969 (1)

S. Szöke, V. Danue, J. Goldhar, N. A. Kurnit, “Bistable Optical Element and its Applications,” Appl. Phys. Lett. 15, 376 (1969).
[CrossRef]

Al-Saidi, I. A.

R. G. Harrison, I. A. Al-Saidi, E. J. D. Cummins, W. J. Firth, “Evidence for Optical Bistability in Millimeter Gas Cells,” Appl. Phys. Lett. 46, 532 (1985).
[CrossRef]

R. G. Harrison, W. J. Firth, C. A. Emshary, I. A. Al-Saidi, “Observation of Optical Hysteresis in an All-Optical Passive Ring Cavity Containing Molecular Gas,” Appl. Phys. Lett. 44, 716 (1984).
[CrossRef]

Antoneti, A.

A. Migus, A. Antoneti, D. Hulin, A. Mysyrowscly, H. M. Gibbs, N. Peyghambarian, J. L. Jewell, “One-picosecond Optical NOR Gate at Room Temperature with a GaAs-AlGaAs Multiple-quantum-well Nonlinear Fabry-Perot Etalon,” Appl. Phys. Lett. 46, 1 (1985).
[CrossRef]

Apanasevich, S. P.

S. P. Apanasevich, F. V. Karpushko, G. V. Sinitsyn, “Response Time of Bistable Devices Based on Evaporated Thin-Film Interferometers,” Sov. J. Quantum Electron. 14, 873 (1984).
[CrossRef]

Athale, R. A.

J. N. Lee, R. A. Athale, “Optical Implementation of the Triple-Matrix Product,” in Conference Digest, ICO-13, Sapporo (1984), paper A1-6.

Bischofberger, T.

T. Bischofberger, Y. R. Shen, “Transient Behaviour of a Nonlinear Fabry-Perot,” Appl. Phys. Lett. 32, 156 (1978);“Nonlinear Fabry-Perot Filled with CS2 and Nitrobenzene,” Opt. Lett. 4, 40 (1979);“Nonlinear Fabry-Perot Filled with CS2 and Nitrobenzene (Errata),” Opt. Lett. 4, 175 (1979).
[CrossRef] [PubMed]

Bohnert, K.

K. Bohnert, H. Kalt, C. Klingshirn, “Intrinsic Absorptive Optical Bistability in CdS,” Appl. Phys. Lett. 43, 12 (1983).
[CrossRef]

Conway, L.

C. Mead, L. Conway, An Introduction to VLSI Systems (Addison-Wesley, Reading, MA, 1980).

Craig, D.

J. G. H. Mathew, D. Craig, A. Miller, “Optical Switching in CdHgTe Etalon at Room Temperature,” Appl. Phys. Lett. 46, 2 (1985).
[CrossRef]

Cummins, E. J. D.

R. G. Harrison, I. A. Al-Saidi, E. J. D. Cummins, W. J. Firth, “Evidence for Optical Bistability in Millimeter Gas Cells,” Appl. Phys. Lett. 46, 532 (1985).
[CrossRef]

Dagenais, M.

M. Dagenais, W. F. Sharfin, “Picojoule, Subnanosecond, All-optical Switching using Bound Excitons in CdS,” Appl. Phys. Lett. 46, 3 (1985).
[CrossRef]

M. Dagenais, W. F. Sharfin, “Cavityless Optical Bistability due to Light-Induced Absorption in Cadmium Sulphide,” Appl. Phys. Lett. 45, 3 (1984).
[CrossRef]

Daley, R.

A. Miller, G. Parry, R. Daley, “Low-Power Nonlinear Fabry-Perot Reflection in CdHgTe at 10 /am,” IEEE J. Quantum Electron. QE-20, 7 (1984).

A. Miller, G. Parry, R. Daley, “Optical Bistability in Semiconductors with Density dependent Carrier Lifetimes,” Opt. Quantum Electron. 16, 339 (1984).
[CrossRef]

Danue, V.

S. Szöke, V. Danue, J. Goldhar, N. A. Kurnit, “Bistable Optical Element and its Applications,” Appl. Phys. Lett. 15, 376 (1969).
[CrossRef]

Davis, B.

A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, W. Prettl, “Optical Bistability in InSb at Room Temperature with Two-Photon Excitation,” Appl. Phys. Lett. 42, 4 (1983).
[CrossRef]

Eichler, H. J.

H. J. Eichler, “Optical Multistability in Silicon observed with a cw Laser at 1.06 μm”Opt. Commun. 45, 1 (1983).
[CrossRef]

Elsaesser, T.

T. Elsaesser, H. Lobentanzer, W. Kaiser, “Self-Defocusing and Self-Phase Modulation in InSb measured with Picosecond Infrared Pulses,” Appl. Phys. Lett. 47, 11 (1985).
[CrossRef]

Emshary, C. A.

R. G. Harrison, W. J. Firth, C. A. Emshary, I. A. Al-Saidi, “Observation of Optical Hysteresis in an All-Optical Passive Ring Cavity Containing Molecular Gas,” Appl. Phys. Lett. 44, 716 (1984).
[CrossRef]

Farhat, N.

D. Psaltis, N. Farhat, “A New Approach to Optical Information Processing based on the Hopfield Model,” in Conference Digest, ICO-13, Sapporo (1984), paper A1-9.

Firth, W. J.

R. G. Harrison, I. A. Al-Saidi, E. J. D. Cummins, W. J. Firth, “Evidence for Optical Bistability in Millimeter Gas Cells,” Appl. Phys. Lett. 46, 532 (1985).
[CrossRef]

F. A. P. Tooley, W. J. Firth, A. C. Walker, H. A. MacKenzie, J. J. E. Reid, S. D. Smith, “Measurement of the Bandwidth of an Optical Transphasor,” IEEE QE-21, 1356 (1985)

R. G. Harrison, W. J. Firth, C. A. Emshary, I. A. Al-Saidi, “Observation of Optical Hysteresis in an All-Optical Passive Ring Cavity Containing Molecular Gas,” Appl. Phys. Lett. 44, 716 (1984).
[CrossRef]

Garmire, E.

C. D. Poole, E. Garmire, “Optical Bistability at the Bandgap in InSb,” Appl. Phys. Lett. 44, 4 (1984).
[CrossRef]

Gibbs, H. M.

A. Migus, A. Antoneti, D. Hulin, A. Mysyrowscly, H. M. Gibbs, N. Peyghambarian, J. L. Jewell, “One-picosecond Optical NOR Gate at Room Temperature with a GaAs-AlGaAs Multiple-quantum-well Nonlinear Fabry-Perot Etalon,” Appl. Phys. Lett. 46, 1 (1985).
[CrossRef]

J. L. Jewell, M. C. Rushford, H. M. Gibbs, “Use of a Single Nonlinear Fabry-Perot Etalon as Optical Logic Gates,” Appl. Phys. Lett. 43, 2, 1975 (1984).

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. van Milligen, “Micro-second Room-temperature Optical Bistability and Crosstalk Studies in ZnS and ZnSe Interference Filters with Visible Light and Milliwatt Powers,” Appl. Phys. Lett. 45, 10 (1984).
[CrossRef]

N. Peyghambarian, H. M. Gibbs, M. C. Rushford, D. A. Weinberger, “Observation of Biexcitonic Optical Bistability and Optical Limiting in CuCl,” Phys. Rev. Lett. 51, 16 (1983);R. Levy, J. Y. Bigot, B. Hönerlage, F. Tomasini, J. B. Grun, “Optical Bistability due to Biexcitons in CuCl,” Solid State Commun. 48, 8 (1983).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, W. Wiegmann, “Optical Bistability in Semiconductors,” Appl. Phys. Lett. 36, 6 (1979).

S. L. McCall, H. M. Gibbs, “Optical Bistability via Thermal Effects in a Glass Filter,” J. Opt. Soc. Am. 68, 378 (1978).

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, “Differential Gain and Bistability using a Sodium-filled Fabry-Perot Interferometer,” Phys. Rev. Lett. 36, 1135 (1976).
[CrossRef]

H. M. Gibbs et al., “Semiconductor Nonlinear Etalons,” in Proceedings, Optical Bistability, Dynamical Nonlinearity and Photonic Logic;Philos. Trans. R. Soc. London A 313, 245 (1984).

Goldhar, J.

S. Szöke, V. Danue, J. Goldhar, N. A. Kurnit, “Bistable Optical Element and its Applications,” Appl. Phys. Lett. 15, 376 (1969).
[CrossRef]

Gossard, A. C.

D. A. B. Miller, A. C. Gossard, W. Wiegmann, “Optical Bistability due to Increasing Absorption,” Opt. Lett. 9, 162 (1984).
[CrossRef] [PubMed]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, W. Wiegmann, “Optical Bistability in Semiconductors,” Appl. Phys. Lett. 36, 6 (1979).

J. L. Jewell, A. C. Gossard, W. Wiegmann, “Optical Logic in GaAs Fabry-Perot Etalons,” in Conference Digest, ICO-13, Sapporo (1984), paper A2-3.

Grischowsky, D.

D. Grischowsky, “Nonlinear Fabry-Perot Interferometer with Subnanosecond Response Times,” J. Opt. Soc. Am. 68, 641 (1978).

Hajto, J.

J. Hajto, I. Janossy, “Optical Bistability observed in Amorphous Semiconductor Films,” Philos. Mag. B 47, 4 (1983).

Harrison, R. G.

R. G. Harrison, I. A. Al-Saidi, E. J. D. Cummins, W. J. Firth, “Evidence for Optical Bistability in Millimeter Gas Cells,” Appl. Phys. Lett. 46, 532 (1985).
[CrossRef]

R. G. Harrison, W. J. Firth, C. A. Emshary, I. A. Al-Saidi, “Observation of Optical Hysteresis in an All-Optical Passive Ring Cavity Containing Molecular Gas,” Appl. Phys. Lett. 44, 716 (1984).
[CrossRef]

Hendry, A.

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A. C. Walker, B. S. Wherrett, A. Hendry, “Room Temperature, Visible Wavelength Optical Bistability in ZnSe Interference Filters,” Opt. Commun. 51, 357 (1984).
[CrossRef]

Huang, A.

A. Huang, “Architectural Considerations Involved in the Design of an Optical Digital Computer,” Proc. IEEE 72, 780 (1984).
[CrossRef]

Hulin, D.

A. Migus, A. Antoneti, D. Hulin, A. Mysyrowscly, H. M. Gibbs, N. Peyghambarian, J. L. Jewell, “One-picosecond Optical NOR Gate at Room Temperature with a GaAs-AlGaAs Multiple-quantum-well Nonlinear Fabry-Perot Etalon,” Appl. Phys. Lett. 46, 1 (1985).
[CrossRef]

Hutchings, D.

B. S. Wherrett, D. Hutchings, D. Russels, Heriot-Watt U.; private communication (1985).

Ironside, C. N.

C. N. Ironside, “The Spin Flip Laser Spectrometer and Aspects of the Nonlinear Optics in InSb,” Ph.D. Thesis, Heriot-Watt U., Edinburgh (unpublished) (1979).

Janossy, I.

S. D. Smith, I. Janossy, H. A. MacKenzie, J. G. H. Mathew, J. J. E. Reid, M. R. Taghizadeh, F. A. P. Tooley, A. C. Walker, “Nonlinear Optical Circuit Elements, Logic Gates for Optical Computers: The First Digital Optical Circuits,” Opt. Eng. 24, 4 (1985).

M. R. Taghizadeh, I. Janossy, S. D. Smith, “Optical Bistability in Bulk ZnSe due to Increasing Absorption and Self-Focussing,” Appl. Phys. Lett. 45, 4 (1985).

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally Induced Optical Bistability in Thin Film Devices,” IEEE QE-21, 9 (1985).

J. Hajto, I. Janossy, “Optical Bistability observed in Amorphous Semiconductor Films,” Philos. Mag. B 47, 4 (1983).

Jewell, J. L.

A. Migus, A. Antoneti, D. Hulin, A. Mysyrowscly, H. M. Gibbs, N. Peyghambarian, J. L. Jewell, “One-picosecond Optical NOR Gate at Room Temperature with a GaAs-AlGaAs Multiple-quantum-well Nonlinear Fabry-Perot Etalon,” Appl. Phys. Lett. 46, 1 (1985).
[CrossRef]

J. L. Jewell, M. C. Rushford, H. M. Gibbs, “Use of a Single Nonlinear Fabry-Perot Etalon as Optical Logic Gates,” Appl. Phys. Lett. 43, 2, 1975 (1984).

J. L. Jewell, A. C. Gossard, W. Wiegmann, “Optical Logic in GaAs Fabry-Perot Etalons,” in Conference Digest, ICO-13, Sapporo (1984), paper A2-3.

Johnston, A.

D. A. B. Miller, S. D. Smith, A. Johnston, “Optical Bistability and Signal Amplification in a Semiconductor Crystal: Applications of New Low-power Nonlinear Effects in InSb,” Appl. Phys. Lett. 35, 658 (1979).
[CrossRef]

Kaiser, W.

T. Elsaesser, H. Lobentanzer, W. Kaiser, “Self-Defocusing and Self-Phase Modulation in InSb measured with Picosecond Infrared Pulses,” Appl. Phys. Lett. 47, 11 (1985).
[CrossRef]

Kalt, H.

K. Bohnert, H. Kalt, C. Klingshirn, “Intrinsic Absorptive Optical Bistability in CdS,” Appl. Phys. Lett. 43, 12 (1983).
[CrossRef]

Kar, A. K.

A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, W. Prettl, “Optical Bistability in InSb at Room Temperature with Two-Photon Excitation,” Appl. Phys. Lett. 42, 4 (1983).
[CrossRef]

A. C. Walker, F. A. P. Tooley, M. E. Prise, J. G. H. Mathew, A. K. Kar, M. R. Taghizadeh, S. D. Smith, “InSb Devices: Transphasors with High Gain, Bistable Switches and Sequential Logica Gates,” in Proceedings, Optical Bistability, Dynamical Nonlinearity and Photonic Logic;also published as Philos. Trans. R. Soc. London A313, 249 (1984).

Karpushko, F. V.

S. P. Apanasevich, F. V. Karpushko, G. V. Sinitsyn, “Response Time of Bistable Devices Based on Evaporated Thin-Film Interferometers,” Sov. J. Quantum Electron. 14, 873 (1984).
[CrossRef]

Karpuskho, F. V.

F. V. Karpuskho, G. V. Sinitsyn, “An Optical Logic Element for Integrated Optics in a Nonlinear Semiconductor Interferometer,” J. Appl. Spectrosc. USSR 29, 1323 (1978).
[CrossRef]

Klingshirn, C.

K. Bohnert, H. Kalt, C. Klingshirn, “Intrinsic Absorptive Optical Bistability in CdS,” Appl. Phys. Lett. 43, 12 (1983).
[CrossRef]

Kurnit, N. A.

S. Szöke, V. Danue, J. Goldhar, N. A. Kurnit, “Bistable Optical Element and its Applications,” Appl. Phys. Lett. 15, 376 (1969).
[CrossRef]

Kwon, Y-S.

Lee, J. N.

J. N. Lee, R. A. Athale, “Optical Implementation of the Triple-Matrix Product,” in Conference Digest, ICO-13, Sapporo (1984), paper A1-6.

Lee, Z. C. P.

Z. C. P. Lee et al., Technical Digest,IEEE GaAs IC Symposium (IEEE, New York, 1983), p. 162.

Lobentanzer, H.

T. Elsaesser, H. Lobentanzer, W. Kaiser, “Self-Defocusing and Self-Phase Modulation in InSb measured with Picosecond Infrared Pulses,” Appl. Phys. Lett. 47, 11 (1985).
[CrossRef]

MacKenzie, H. A.

S. D. Smith, I. Janossy, H. A. MacKenzie, J. G. H. Mathew, J. J. E. Reid, M. R. Taghizadeh, F. A. P. Tooley, A. C. Walker, “Nonlinear Optical Circuit Elements, Logic Gates for Optical Computers: The First Digital Optical Circuits,” Opt. Eng. 24, 4 (1985).

F. A. P. Tooley, W. J. Firth, A. C. Walker, H. A. MacKenzie, J. J. E. Reid, S. D. Smith, “Measurement of the Bandwidth of an Optical Transphasor,” IEEE QE-21, 1356 (1985)

Macleod, H. A.

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. van Milligen, “Micro-second Room-temperature Optical Bistability and Crosstalk Studies in ZnS and ZnSe Interference Filters with Visible Light and Milliwatt Powers,” Appl. Phys. Lett. 45, 10 (1984).
[CrossRef]

Mathew, J. G. H.

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally Induced Optical Bistability in Thin Film Devices,” IEEE QE-21, 9 (1985).

S. D. Smith, I. Janossy, H. A. MacKenzie, J. G. H. Mathew, J. J. E. Reid, M. R. Taghizadeh, F. A. P. Tooley, A. C. Walker, “Nonlinear Optical Circuit Elements, Logic Gates for Optical Computers: The First Digital Optical Circuits,” Opt. Eng. 24, 4 (1985).

J. G. H. Mathew, D. Craig, A. Miller, “Optical Switching in CdHgTe Etalon at Room Temperature,” Appl. Phys. Lett. 46, 2 (1985).
[CrossRef]

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A. C. Walker, B. S. Wherrett, A. Hendry, “Room Temperature, Visible Wavelength Optical Bistability in ZnSe Interference Filters,” Opt. Commun. 51, 357 (1984).
[CrossRef]

A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, W. Prettl, “Optical Bistability in InSb at Room Temperature with Two-Photon Excitation,” Appl. Phys. Lett. 42, 4 (1983).
[CrossRef]

A. C. Walker, F. A. P. Tooley, M. E. Prise, J. G. H. Mathew, A. K. Kar, M. R. Taghizadeh, S. D. Smith, “InSb Devices: Transphasors with High Gain, Bistable Switches and Sequential Logica Gates,” in Proceedings, Optical Bistability, Dynamical Nonlinearity and Photonic Logic;also published as Philos. Trans. R. Soc. London A313, 249 (1984).

McCall, S. L.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, W. Wiegmann, “Optical Bistability in Semiconductors,” Appl. Phys. Lett. 36, 6 (1979).

S. L. McCall, H. M. Gibbs, “Optical Bistability via Thermal Effects in a Glass Filter,” J. Opt. Soc. Am. 68, 378 (1978).

T. N. C. Venkatesan, S. L. McCall, “Optical Bistability and Differential Gain between 85 and 296°K in a Fabry-Perot Containing Ruby,” Appl. Phys. Lett. 30, 282 (1977).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, “Differential Gain and Bistability using a Sodium-filled Fabry-Perot Interferometer,” Phys. Rev. Lett. 36, 1135 (1976).
[CrossRef]

Mead, C.

C. Mead, L. Conway, An Introduction to VLSI Systems (Addison-Wesley, Reading, MA, 1980).

Migus, A.

A. Migus, A. Antoneti, D. Hulin, A. Mysyrowscly, H. M. Gibbs, N. Peyghambarian, J. L. Jewell, “One-picosecond Optical NOR Gate at Room Temperature with a GaAs-AlGaAs Multiple-quantum-well Nonlinear Fabry-Perot Etalon,” Appl. Phys. Lett. 46, 1 (1985).
[CrossRef]

Miller, A.

J. G. H. Mathew, D. Craig, A. Miller, “Optical Switching in CdHgTe Etalon at Room Temperature,” Appl. Phys. Lett. 46, 2 (1985).
[CrossRef]

A. Miller, G. Parry, R. Daley, “Optical Bistability in Semiconductors with Density dependent Carrier Lifetimes,” Opt. Quantum Electron. 16, 339 (1984).
[CrossRef]

A. Miller, G. Parry, R. Daley, “Low-Power Nonlinear Fabry-Perot Reflection in CdHgTe at 10 /am,” IEEE J. Quantum Electron. QE-20, 7 (1984).

D. A. B. Miller, M. H. Mozolowski, A. Miller, S. D. Smith, “Nonlinear Optical Effects in InSb with a c.w. CO Laser,” Opt. Commun. 27, 133 (1978).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, A. C. Gossard, W. Wiegmann, “Optical Bistability due to Increasing Absorption,” Opt. Lett. 9, 162 (1984).
[CrossRef] [PubMed]

D. A. B. Miller, “Refractive Fabry-Perot Bistability with Linear Absorption,” IEEE J. Quantum Electron. QE-17, 3(1981).

D. A. B. Miller, S. D. Smith, B. S. Wherrett, “The Microscopic Mechanism of Third-Order Optical Nonlinearity in InSb,” Opt. Commun. 35, 2 (1980);D. A. B. Miller, C. T. Seaton, M. E. Prise, S. D. Smith, “Band-Gap-Resonant Nonlinear Refraction in III–V Semiconductors,” Phys. Rev. Lett. 47, 197 (1981).
[CrossRef]

D. A. B. Miller, S. D. Smith, “Two Beam Optical Amplification and Bistability in InSb,” Opt. Commun. 31, 101 (1979).
[CrossRef]

D. A. B. Miller, S. D. Smith, A. Johnston, “Optical Bistability and Signal Amplification in a Semiconductor Crystal: Applications of New Low-power Nonlinear Effects in InSb,” Appl. Phys. Lett. 35, 658 (1979).
[CrossRef]

D. Weaire, B. S. Wherrett, D. A. B. Miller, S. D. Smith, “Effect of Low-Power Nonlinear Refraction on Laser-Beam Propagation in InSb,” Opt. Lett. 4, 331 (1979).
[CrossRef] [PubMed]

D. A. B. Miller, M. H. Mozolowski, A. Miller, S. D. Smith, “Nonlinear Optical Effects in InSb with a c.w. CO Laser,” Opt. Commun. 27, 133 (1978).
[CrossRef]

Mozolowski, M. H.

D. A. B. Miller, M. H. Mozolowski, A. Miller, S. D. Smith, “Nonlinear Optical Effects in InSb with a c.w. CO Laser,” Opt. Commun. 27, 133 (1978).
[CrossRef]

Mysyrowscly, A.

A. Migus, A. Antoneti, D. Hulin, A. Mysyrowscly, H. M. Gibbs, N. Peyghambarian, J. L. Jewell, “One-picosecond Optical NOR Gate at Room Temperature with a GaAs-AlGaAs Multiple-quantum-well Nonlinear Fabry-Perot Etalon,” Appl. Phys. Lett. 46, 1 (1985).
[CrossRef]

Olbright, G. R.

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. van Milligen, “Micro-second Room-temperature Optical Bistability and Crosstalk Studies in ZnS and ZnSe Interference Filters with Visible Light and Milliwatt Powers,” Appl. Phys. Lett. 45, 10 (1984).
[CrossRef]

Parry, G.

A. Miller, G. Parry, R. Daley, “Optical Bistability in Semiconductors with Density dependent Carrier Lifetimes,” Opt. Quantum Electron. 16, 339 (1984).
[CrossRef]

A. Miller, G. Parry, R. Daley, “Low-Power Nonlinear Fabry-Perot Reflection in CdHgTe at 10 /am,” IEEE J. Quantum Electron. QE-20, 7 (1984).

Passner, A.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, W. Wiegmann, “Optical Bistability in Semiconductors,” Appl. Phys. Lett. 36, 6 (1979).

Peyghambarian, N.

A. Migus, A. Antoneti, D. Hulin, A. Mysyrowscly, H. M. Gibbs, N. Peyghambarian, J. L. Jewell, “One-picosecond Optical NOR Gate at Room Temperature with a GaAs-AlGaAs Multiple-quantum-well Nonlinear Fabry-Perot Etalon,” Appl. Phys. Lett. 46, 1 (1985).
[CrossRef]

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. van Milligen, “Micro-second Room-temperature Optical Bistability and Crosstalk Studies in ZnS and ZnSe Interference Filters with Visible Light and Milliwatt Powers,” Appl. Phys. Lett. 45, 10 (1984).
[CrossRef]

N. Peyghambarian, H. M. Gibbs, M. C. Rushford, D. A. Weinberger, “Observation of Biexcitonic Optical Bistability and Optical Limiting in CuCl,” Phys. Rev. Lett. 51, 16 (1983);R. Levy, J. Y. Bigot, B. Hönerlage, F. Tomasini, J. B. Grun, “Optical Bistability due to Biexcitons in CuCl,” Solid State Commun. 48, 8 (1983).
[CrossRef]

Poole, C. D.

C. D. Poole, E. Garmire, “Optical Bistability at the Bandgap in InSb,” Appl. Phys. Lett. 44, 4 (1984).
[CrossRef]

Prettl, W.

A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, W. Prettl, “Optical Bistability in InSb at Room Temperature with Two-Photon Excitation,” Appl. Phys. Lett. 42, 4 (1983).
[CrossRef]

Prise, M. E.

C. T. Seaton, S. D. Smith, F. A. P. Tooley, M. E. Prise, M. R. Taghizadeh, “The Realization of an InSb Bistable Device as an Optical and Gate and its use to measure Carrier Recombination Times,” Appl. Phys. Lett. 42, 131 (1983).
[CrossRef]

A. C. Walker, F. A. P. Tooley, M. E. Prise, J. G. H. Mathew, A. K. Kar, M. R. Taghizadeh, S. D. Smith, “InSb Devices: Transphasors with High Gain, Bistable Switches and Sequential Logica Gates,” in Proceedings, Optical Bistability, Dynamical Nonlinearity and Photonic Logic;also published as Philos. Trans. R. Soc. London A313, 249 (1984).

Psaltis, D.

D. Psaltis, N. Farhat, “A New Approach to Optical Information Processing based on the Hopfield Model,” in Conference Digest, ICO-13, Sapporo (1984), paper A1-9.

Reid, J. J. E.

S. D. Smith, I. Janossy, H. A. MacKenzie, J. G. H. Mathew, J. J. E. Reid, M. R. Taghizadeh, F. A. P. Tooley, A. C. Walker, “Nonlinear Optical Circuit Elements, Logic Gates for Optical Computers: The First Digital Optical Circuits,” Opt. Eng. 24, 4 (1985).

F. A. P. Tooley, W. J. Firth, A. C. Walker, H. A. MacKenzie, J. J. E. Reid, S. D. Smith, “Measurement of the Bandwidth of an Optical Transphasor,” IEEE QE-21, 1356 (1985)

Rushford, M. C.

J. L. Jewell, M. C. Rushford, H. M. Gibbs, “Use of a Single Nonlinear Fabry-Perot Etalon as Optical Logic Gates,” Appl. Phys. Lett. 43, 2, 1975 (1984).

N. Peyghambarian, H. M. Gibbs, M. C. Rushford, D. A. Weinberger, “Observation of Biexcitonic Optical Bistability and Optical Limiting in CuCl,” Phys. Rev. Lett. 51, 16 (1983);R. Levy, J. Y. Bigot, B. Hönerlage, F. Tomasini, J. B. Grun, “Optical Bistability due to Biexcitons in CuCl,” Solid State Commun. 48, 8 (1983).
[CrossRef]

Russels, D.

B. S. Wherrett, D. Hutchings, D. Russels, Heriot-Watt U.; private communication (1985).

Sawchuk, A. A.

A. A. Sawchuk, “Numerical Optical Computing Techniques,”in Conference Digest, ICO-13, Sapporo (1984), paper A1-1.

Schindler, K.

G. Staupendahl, K. Schindler, “A New Optical-Optical Modulator,” Opt. Quantum Electron. 14, 157 (1982).
[CrossRef]

Scragg, T.

T. Scragg, S. D. Smith, “External Cavity Operation of the Spin-Flip Raman Laser,” Opt. Commun. 15, 188 (1975).
[CrossRef]

Seaton, C. T.

C. T. Seaton, S. D. Smith, F. A. P. Tooley, M. E. Prise, M. R. Taghizadeh, “The Realization of an InSb Bistable Device as an Optical and Gate and its use to measure Carrier Recombination Times,” Appl. Phys. Lett. 42, 131 (1983).
[CrossRef]

F. A. P. Tooley, S. D. Smith, C. T. Seaton, “High Gain Signal Amplification in an InSb Transphasor at 77 K,” Appl. Phys. 43, 9 (1983).

Sharfin, W. F.

M. Dagenais, W. F. Sharfin, “Picojoule, Subnanosecond, All-optical Switching using Bound Excitons in CdS,” Appl. Phys. Lett. 46, 3 (1985).
[CrossRef]

M. Dagenais, W. F. Sharfin, “Cavityless Optical Bistability due to Light-Induced Absorption in Cadmium Sulphide,” Appl. Phys. Lett. 45, 3 (1984).
[CrossRef]

Shen, Y. R.

T. Bischofberger, Y. R. Shen, “Transient Behaviour of a Nonlinear Fabry-Perot,” Appl. Phys. Lett. 32, 156 (1978);“Nonlinear Fabry-Perot Filled with CS2 and Nitrobenzene,” Opt. Lett. 4, 40 (1979);“Nonlinear Fabry-Perot Filled with CS2 and Nitrobenzene (Errata),” Opt. Lett. 4, 175 (1979).
[CrossRef] [PubMed]

Shin, S.-Y.

Sinitsyn, G. V.

S. P. Apanasevich, F. V. Karpushko, G. V. Sinitsyn, “Response Time of Bistable Devices Based on Evaporated Thin-Film Interferometers,” Sov. J. Quantum Electron. 14, 873 (1984).
[CrossRef]

F. V. Karpuskho, G. V. Sinitsyn, “An Optical Logic Element for Integrated Optics in a Nonlinear Semiconductor Interferometer,” J. Appl. Spectrosc. USSR 29, 1323 (1978).
[CrossRef]

Smith, S. D.

M. R. Taghizadeh, I. Janossy, S. D. Smith, “Optical Bistability in Bulk ZnSe due to Increasing Absorption and Self-Focussing,” Appl. Phys. Lett. 45, 4 (1985).

S. D. Smith, I. Janossy, H. A. MacKenzie, J. G. H. Mathew, J. J. E. Reid, M. R. Taghizadeh, F. A. P. Tooley, A. C. Walker, “Nonlinear Optical Circuit Elements, Logic Gates for Optical Computers: The First Digital Optical Circuits,” Opt. Eng. 24, 4 (1985).

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally Induced Optical Bistability in Thin Film Devices,” IEEE QE-21, 9 (1985).

F. A. P. Tooley, W. J. Firth, A. C. Walker, H. A. MacKenzie, J. J. E. Reid, S. D. Smith, “Measurement of the Bandwidth of an Optical Transphasor,” IEEE QE-21, 1356 (1985)

B. S. Wherrett, F. A. P. Tooley, S. D. Smith, “Absorption Switching and Bistability in InSb,” Opt. Commun. 52, 4 (1984).
[CrossRef]

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A. C. Walker, B. S. Wherrett, A. Hendry, “Room Temperature, Visible Wavelength Optical Bistability in ZnSe Interference Filters,” Opt. Commun. 51, 357 (1984).
[CrossRef]

C. T. Seaton, S. D. Smith, F. A. P. Tooley, M. E. Prise, M. R. Taghizadeh, “The Realization of an InSb Bistable Device as an Optical and Gate and its use to measure Carrier Recombination Times,” Appl. Phys. Lett. 42, 131 (1983).
[CrossRef]

A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, W. Prettl, “Optical Bistability in InSb at Room Temperature with Two-Photon Excitation,” Appl. Phys. Lett. 42, 4 (1983).
[CrossRef]

F. A. P. Tooley, S. D. Smith, C. T. Seaton, “High Gain Signal Amplification in an InSb Transphasor at 77 K,” Appl. Phys. 43, 9 (1983).

D. A. B. Miller, S. D. Smith, B. S. Wherrett, “The Microscopic Mechanism of Third-Order Optical Nonlinearity in InSb,” Opt. Commun. 35, 2 (1980);D. A. B. Miller, C. T. Seaton, M. E. Prise, S. D. Smith, “Band-Gap-Resonant Nonlinear Refraction in III–V Semiconductors,” Phys. Rev. Lett. 47, 197 (1981).
[CrossRef]

D. A. B. Miller, S. D. Smith, “Two Beam Optical Amplification and Bistability in InSb,” Opt. Commun. 31, 101 (1979).
[CrossRef]

D. A. B. Miller, S. D. Smith, A. Johnston, “Optical Bistability and Signal Amplification in a Semiconductor Crystal: Applications of New Low-power Nonlinear Effects in InSb,” Appl. Phys. Lett. 35, 658 (1979).
[CrossRef]

D. Weaire, B. S. Wherrett, D. A. B. Miller, S. D. Smith, “Effect of Low-Power Nonlinear Refraction on Laser-Beam Propagation in InSb,” Opt. Lett. 4, 331 (1979).
[CrossRef] [PubMed]

D. A. B. Miller, M. H. Mozolowski, A. Miller, S. D. Smith, “Nonlinear Optical Effects in InSb with a c.w. CO Laser,” Opt. Commun. 27, 133 (1978).
[CrossRef]

T. Scragg, S. D. Smith, “External Cavity Operation of the Spin-Flip Raman Laser,” Opt. Commun. 15, 188 (1975).
[CrossRef]

S. D. Smith, A. C. Walker, “Optical Bistability and its Application to Computing,” in Conference Digest, ICO-13, Sapporo (1984), paper B5-10.

A. C. Walker, F. A. P. Tooley, M. E. Prise, J. G. H. Mathew, A. K. Kar, M. R. Taghizadeh, S. D. Smith, “InSb Devices: Transphasors with High Gain, Bistable Switches and Sequential Logica Gates,” in Proceedings, Optical Bistability, Dynamical Nonlinearity and Photonic Logic;also published as Philos. Trans. R. Soc. London A313, 249 (1984).

Song, J-W

Staupendahl, G.

G. Staupendahl, K. Schindler, “A New Optical-Optical Modulator,” Opt. Quantum Electron. 14, 157 (1982).
[CrossRef]

Szöke, S.

S. Szöke, V. Danue, J. Goldhar, N. A. Kurnit, “Bistable Optical Element and its Applications,” Appl. Phys. Lett. 15, 376 (1969).
[CrossRef]

Taghizadeh, M. R.

S. D. Smith, I. Janossy, H. A. MacKenzie, J. G. H. Mathew, J. J. E. Reid, M. R. Taghizadeh, F. A. P. Tooley, A. C. Walker, “Nonlinear Optical Circuit Elements, Logic Gates for Optical Computers: The First Digital Optical Circuits,” Opt. Eng. 24, 4 (1985).

M. R. Taghizadeh, I. Janossy, S. D. Smith, “Optical Bistability in Bulk ZnSe due to Increasing Absorption and Self-Focussing,” Appl. Phys. Lett. 45, 4 (1985).

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally Induced Optical Bistability in Thin Film Devices,” IEEE QE-21, 9 (1985).

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A. C. Walker, B. S. Wherrett, A. Hendry, “Room Temperature, Visible Wavelength Optical Bistability in ZnSe Interference Filters,” Opt. Commun. 51, 357 (1984).
[CrossRef]

C. T. Seaton, S. D. Smith, F. A. P. Tooley, M. E. Prise, M. R. Taghizadeh, “The Realization of an InSb Bistable Device as an Optical and Gate and its use to measure Carrier Recombination Times,” Appl. Phys. Lett. 42, 131 (1983).
[CrossRef]

A. C. Walker, F. A. P. Tooley, M. E. Prise, J. G. H. Mathew, A. K. Kar, M. R. Taghizadeh, S. D. Smith, “InSb Devices: Transphasors with High Gain, Bistable Switches and Sequential Logica Gates,” in Proceedings, Optical Bistability, Dynamical Nonlinearity and Photonic Logic;also published as Philos. Trans. R. Soc. London A313, 249 (1984).

Tooley, F. A. P.

S. D. Smith, I. Janossy, H. A. MacKenzie, J. G. H. Mathew, J. J. E. Reid, M. R. Taghizadeh, F. A. P. Tooley, A. C. Walker, “Nonlinear Optical Circuit Elements, Logic Gates for Optical Computers: The First Digital Optical Circuits,” Opt. Eng. 24, 4 (1985).

F. A. P. Tooley, W. J. Firth, A. C. Walker, H. A. MacKenzie, J. J. E. Reid, S. D. Smith, “Measurement of the Bandwidth of an Optical Transphasor,” IEEE QE-21, 1356 (1985)

B. S. Wherrett, F. A. P. Tooley, S. D. Smith, “Absorption Switching and Bistability in InSb,” Opt. Commun. 52, 4 (1984).
[CrossRef]

F. A. P. Tooley, S. D. Smith, C. T. Seaton, “High Gain Signal Amplification in an InSb Transphasor at 77 K,” Appl. Phys. 43, 9 (1983).

C. T. Seaton, S. D. Smith, F. A. P. Tooley, M. E. Prise, M. R. Taghizadeh, “The Realization of an InSb Bistable Device as an Optical and Gate and its use to measure Carrier Recombination Times,” Appl. Phys. Lett. 42, 131 (1983).
[CrossRef]

A. C. Walker, F. A. P. Tooley, M. E. Prise, J. G. H. Mathew, A. K. Kar, M. R. Taghizadeh, S. D. Smith, “InSb Devices: Transphasors with High Gain, Bistable Switches and Sequential Logica Gates,” in Proceedings, Optical Bistability, Dynamical Nonlinearity and Photonic Logic;also published as Philos. Trans. R. Soc. London A313, 249 (1984).

van Milligen, F.

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. van Milligen, “Micro-second Room-temperature Optical Bistability and Crosstalk Studies in ZnS and ZnSe Interference Filters with Visible Light and Milliwatt Powers,” Appl. Phys. Lett. 45, 10 (1984).
[CrossRef]

Venkatesan, T. N. C.

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, W. Wiegmann, “Optical Bistability in Semiconductors,” Appl. Phys. Lett. 36, 6 (1979).

T. N. C. Venkatesan, S. L. McCall, “Optical Bistability and Differential Gain between 85 and 296°K in a Fabry-Perot Containing Ruby,” Appl. Phys. Lett. 30, 282 (1977).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, “Differential Gain and Bistability using a Sodium-filled Fabry-Perot Interferometer,” Phys. Rev. Lett. 36, 1135 (1976).
[CrossRef]

Walker, A. C.

S. D. Smith, I. Janossy, H. A. MacKenzie, J. G. H. Mathew, J. J. E. Reid, M. R. Taghizadeh, F. A. P. Tooley, A. C. Walker, “Nonlinear Optical Circuit Elements, Logic Gates for Optical Computers: The First Digital Optical Circuits,” Opt. Eng. 24, 4 (1985).

F. A. P. Tooley, W. J. Firth, A. C. Walker, H. A. MacKenzie, J. J. E. Reid, S. D. Smith, “Measurement of the Bandwidth of an Optical Transphasor,” IEEE QE-21, 1356 (1985)

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A. C. Walker, B. S. Wherrett, A. Hendry, “Room Temperature, Visible Wavelength Optical Bistability in ZnSe Interference Filters,” Opt. Commun. 51, 357 (1984).
[CrossRef]

S. D. Smith, A. C. Walker, “Optical Bistability and its Application to Computing,” in Conference Digest, ICO-13, Sapporo (1984), paper B5-10.

A. C. Walker, F. A. P. Tooley, M. E. Prise, J. G. H. Mathew, A. K. Kar, M. R. Taghizadeh, S. D. Smith, “InSb Devices: Transphasors with High Gain, Bistable Switches and Sequential Logica Gates,” in Proceedings, Optical Bistability, Dynamical Nonlinearity and Photonic Logic;also published as Philos. Trans. R. Soc. London A313, 249 (1984).

Weaire, D.

Weinberger, D. A.

N. Peyghambarian, H. M. Gibbs, M. C. Rushford, D. A. Weinberger, “Observation of Biexcitonic Optical Bistability and Optical Limiting in CuCl,” Phys. Rev. Lett. 51, 16 (1983);R. Levy, J. Y. Bigot, B. Hönerlage, F. Tomasini, J. B. Grun, “Optical Bistability due to Biexcitons in CuCl,” Solid State Commun. 48, 8 (1983).
[CrossRef]

Wherrett, B. S.

B. S. Wherrett, “All-Optical Computation: a Design for Tackling a Specific Physical Problem,” Appl. Opt. 24, (1985).
[CrossRef] [PubMed]

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A. C. Walker, B. S. Wherrett, A. Hendry, “Room Temperature, Visible Wavelength Optical Bistability in ZnSe Interference Filters,” Opt. Commun. 51, 357 (1984).
[CrossRef]

B. S. Wherrett, “Fabry-Perot Bistable Cavity Optimisation,” IEEE J. Quantum Electron. QE-20, 646 (1984).
[CrossRef]

B. S. Wherrett, “One Electron Theory of Nonlinear Refraction,” in Proceedings, Optical Bistability, Dynamical Nonlinearity and Photonic Logic, Philos. Trans. R. Soc. London A 313, 213 (1984).
[CrossRef]

B. S. Wherrett, F. A. P. Tooley, S. D. Smith, “Absorption Switching and Bistability in InSb,” Opt. Commun. 52, 4 (1984).
[CrossRef]

B. S. Wherrett, “A Comparison of Theories of Resonant Nonlinear Refraction in Semiconductors,” Proc. R. Soc. London A 390, 373 (1983).
[CrossRef]

D. A. B. Miller, S. D. Smith, B. S. Wherrett, “The Microscopic Mechanism of Third-Order Optical Nonlinearity in InSb,” Opt. Commun. 35, 2 (1980);D. A. B. Miller, C. T. Seaton, M. E. Prise, S. D. Smith, “Band-Gap-Resonant Nonlinear Refraction in III–V Semiconductors,” Phys. Rev. Lett. 47, 197 (1981).
[CrossRef]

D. Weaire, B. S. Wherrett, D. A. B. Miller, S. D. Smith, “Effect of Low-Power Nonlinear Refraction on Laser-Beam Propagation in InSb,” Opt. Lett. 4, 331 (1979).
[CrossRef] [PubMed]

B. S. Wherrett, D. Hutchings, D. Russels, Heriot-Watt U.; private communication (1985).

Wiegmann, W.

D. A. B. Miller, A. C. Gossard, W. Wiegmann, “Optical Bistability due to Increasing Absorption,” Opt. Lett. 9, 162 (1984).
[CrossRef] [PubMed]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, W. Wiegmann, “Optical Bistability in Semiconductors,” Appl. Phys. Lett. 36, 6 (1979).

J. L. Jewell, A. C. Gossard, W. Wiegmann, “Optical Logic in GaAs Fabry-Perot Etalons,” in Conference Digest, ICO-13, Sapporo (1984), paper A2-3.

Appl. Opt. (2)

Appl. Phys. (1)

F. A. P. Tooley, S. D. Smith, C. T. Seaton, “High Gain Signal Amplification in an InSb Transphasor at 77 K,” Appl. Phys. 43, 9 (1983).

Appl. Phys. Lett. (19)

C. T. Seaton, S. D. Smith, F. A. P. Tooley, M. E. Prise, M. R. Taghizadeh, “The Realization of an InSb Bistable Device as an Optical and Gate and its use to measure Carrier Recombination Times,” Appl. Phys. Lett. 42, 131 (1983).
[CrossRef]

T. Elsaesser, H. Lobentanzer, W. Kaiser, “Self-Defocusing and Self-Phase Modulation in InSb measured with Picosecond Infrared Pulses,” Appl. Phys. Lett. 47, 11 (1985).
[CrossRef]

A. Migus, A. Antoneti, D. Hulin, A. Mysyrowscly, H. M. Gibbs, N. Peyghambarian, J. L. Jewell, “One-picosecond Optical NOR Gate at Room Temperature with a GaAs-AlGaAs Multiple-quantum-well Nonlinear Fabry-Perot Etalon,” Appl. Phys. Lett. 46, 1 (1985).
[CrossRef]

T. N. C. Venkatesan, S. L. McCall, “Optical Bistability and Differential Gain between 85 and 296°K in a Fabry-Perot Containing Ruby,” Appl. Phys. Lett. 30, 282 (1977).
[CrossRef]

T. Bischofberger, Y. R. Shen, “Transient Behaviour of a Nonlinear Fabry-Perot,” Appl. Phys. Lett. 32, 156 (1978);“Nonlinear Fabry-Perot Filled with CS2 and Nitrobenzene,” Opt. Lett. 4, 40 (1979);“Nonlinear Fabry-Perot Filled with CS2 and Nitrobenzene (Errata),” Opt. Lett. 4, 175 (1979).
[CrossRef] [PubMed]

J. L. Jewell, M. C. Rushford, H. M. Gibbs, “Use of a Single Nonlinear Fabry-Perot Etalon as Optical Logic Gates,” Appl. Phys. Lett. 43, 2, 1975 (1984).

R. G. Harrison, I. A. Al-Saidi, E. J. D. Cummins, W. J. Firth, “Evidence for Optical Bistability in Millimeter Gas Cells,” Appl. Phys. Lett. 46, 532 (1985).
[CrossRef]

R. G. Harrison, W. J. Firth, C. A. Emshary, I. A. Al-Saidi, “Observation of Optical Hysteresis in an All-Optical Passive Ring Cavity Containing Molecular Gas,” Appl. Phys. Lett. 44, 716 (1984).
[CrossRef]

G. R. Olbright, N. Peyghambarian, H. M. Gibbs, H. A. Macleod, F. van Milligen, “Micro-second Room-temperature Optical Bistability and Crosstalk Studies in ZnS and ZnSe Interference Filters with Visible Light and Milliwatt Powers,” Appl. Phys. Lett. 45, 10 (1984).
[CrossRef]

S. Szöke, V. Danue, J. Goldhar, N. A. Kurnit, “Bistable Optical Element and its Applications,” Appl. Phys. Lett. 15, 376 (1969).
[CrossRef]

D. A. B. Miller, S. D. Smith, A. Johnston, “Optical Bistability and Signal Amplification in a Semiconductor Crystal: Applications of New Low-power Nonlinear Effects in InSb,” Appl. Phys. Lett. 35, 658 (1979).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner, W. Wiegmann, “Optical Bistability in Semiconductors,” Appl. Phys. Lett. 36, 6 (1979).

A. K. Kar, J. G. H. Mathew, S. D. Smith, B. Davis, W. Prettl, “Optical Bistability in InSb at Room Temperature with Two-Photon Excitation,” Appl. Phys. Lett. 42, 4 (1983).
[CrossRef]

M. Dagenais, W. F. Sharfin, “Picojoule, Subnanosecond, All-optical Switching using Bound Excitons in CdS,” Appl. Phys. Lett. 46, 3 (1985).
[CrossRef]

K. Bohnert, H. Kalt, C. Klingshirn, “Intrinsic Absorptive Optical Bistability in CdS,” Appl. Phys. Lett. 43, 12 (1983).
[CrossRef]

M. Dagenais, W. F. Sharfin, “Cavityless Optical Bistability due to Light-Induced Absorption in Cadmium Sulphide,” Appl. Phys. Lett. 45, 3 (1984).
[CrossRef]

J. G. H. Mathew, D. Craig, A. Miller, “Optical Switching in CdHgTe Etalon at Room Temperature,” Appl. Phys. Lett. 46, 2 (1985).
[CrossRef]

C. D. Poole, E. Garmire, “Optical Bistability at the Bandgap in InSb,” Appl. Phys. Lett. 44, 4 (1984).
[CrossRef]

M. R. Taghizadeh, I. Janossy, S. D. Smith, “Optical Bistability in Bulk ZnSe due to Increasing Absorption and Self-Focussing,” Appl. Phys. Lett. 45, 4 (1985).

IEEE (2)

I. Janossy, M. R. Taghizadeh, J. G. H. Mathew, S. D. Smith, “Thermally Induced Optical Bistability in Thin Film Devices,” IEEE QE-21, 9 (1985).

F. A. P. Tooley, W. J. Firth, A. C. Walker, H. A. MacKenzie, J. J. E. Reid, S. D. Smith, “Measurement of the Bandwidth of an Optical Transphasor,” IEEE QE-21, 1356 (1985)

IEEE J. Quantum Electron. (3)

D. A. B. Miller, “Refractive Fabry-Perot Bistability with Linear Absorption,” IEEE J. Quantum Electron. QE-17, 3(1981).

B. S. Wherrett, “Fabry-Perot Bistable Cavity Optimisation,” IEEE J. Quantum Electron. QE-20, 646 (1984).
[CrossRef]

A. Miller, G. Parry, R. Daley, “Low-Power Nonlinear Fabry-Perot Reflection in CdHgTe at 10 /am,” IEEE J. Quantum Electron. QE-20, 7 (1984).

J. Appl. Spectrosc. USSR (1)

F. V. Karpuskho, G. V. Sinitsyn, “An Optical Logic Element for Integrated Optics in a Nonlinear Semiconductor Interferometer,” J. Appl. Spectrosc. USSR 29, 1323 (1978).
[CrossRef]

J. Opt. Soc. Am. (2)

D. Grischowsky, “Nonlinear Fabry-Perot Interferometer with Subnanosecond Response Times,” J. Opt. Soc. Am. 68, 641 (1978).

S. L. McCall, H. M. Gibbs, “Optical Bistability via Thermal Effects in a Glass Filter,” J. Opt. Soc. Am. 68, 378 (1978).

Opt. Commun. (7)

S. D. Smith, J. G. H. Mathew, M. R. Taghizadeh, A. C. Walker, B. S. Wherrett, A. Hendry, “Room Temperature, Visible Wavelength Optical Bistability in ZnSe Interference Filters,” Opt. Commun. 51, 357 (1984).
[CrossRef]

H. J. Eichler, “Optical Multistability in Silicon observed with a cw Laser at 1.06 μm”Opt. Commun. 45, 1 (1983).
[CrossRef]

B. S. Wherrett, F. A. P. Tooley, S. D. Smith, “Absorption Switching and Bistability in InSb,” Opt. Commun. 52, 4 (1984).
[CrossRef]

D. A. B. Miller, S. D. Smith, B. S. Wherrett, “The Microscopic Mechanism of Third-Order Optical Nonlinearity in InSb,” Opt. Commun. 35, 2 (1980);D. A. B. Miller, C. T. Seaton, M. E. Prise, S. D. Smith, “Band-Gap-Resonant Nonlinear Refraction in III–V Semiconductors,” Phys. Rev. Lett. 47, 197 (1981).
[CrossRef]

D. A. B. Miller, S. D. Smith, “Two Beam Optical Amplification and Bistability in InSb,” Opt. Commun. 31, 101 (1979).
[CrossRef]

D. A. B. Miller, M. H. Mozolowski, A. Miller, S. D. Smith, “Nonlinear Optical Effects in InSb with a c.w. CO Laser,” Opt. Commun. 27, 133 (1978).
[CrossRef]

T. Scragg, S. D. Smith, “External Cavity Operation of the Spin-Flip Raman Laser,” Opt. Commun. 15, 188 (1975).
[CrossRef]

Opt. Eng. (1)

S. D. Smith, I. Janossy, H. A. MacKenzie, J. G. H. Mathew, J. J. E. Reid, M. R. Taghizadeh, F. A. P. Tooley, A. C. Walker, “Nonlinear Optical Circuit Elements, Logic Gates for Optical Computers: The First Digital Optical Circuits,” Opt. Eng. 24, 4 (1985).

Opt. Lett. (2)

Opt. Quantum Electron. (2)

G. Staupendahl, K. Schindler, “A New Optical-Optical Modulator,” Opt. Quantum Electron. 14, 157 (1982).
[CrossRef]

A. Miller, G. Parry, R. Daley, “Optical Bistability in Semiconductors with Density dependent Carrier Lifetimes,” Opt. Quantum Electron. 16, 339 (1984).
[CrossRef]

Philos. Mag. B (1)

J. Hajto, I. Janossy, “Optical Bistability observed in Amorphous Semiconductor Films,” Philos. Mag. B 47, 4 (1983).

Phys. Rev. Lett. (2)

N. Peyghambarian, H. M. Gibbs, M. C. Rushford, D. A. Weinberger, “Observation of Biexcitonic Optical Bistability and Optical Limiting in CuCl,” Phys. Rev. Lett. 51, 16 (1983);R. Levy, J. Y. Bigot, B. Hönerlage, F. Tomasini, J. B. Grun, “Optical Bistability due to Biexcitons in CuCl,” Solid State Commun. 48, 8 (1983).
[CrossRef]

H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, “Differential Gain and Bistability using a Sodium-filled Fabry-Perot Interferometer,” Phys. Rev. Lett. 36, 1135 (1976).
[CrossRef]

Proc. IEEE (1)

A. Huang, “Architectural Considerations Involved in the Design of an Optical Digital Computer,” Proc. IEEE 72, 780 (1984).
[CrossRef]

Proc. R. Soc. London A (1)

B. S. Wherrett, “A Comparison of Theories of Resonant Nonlinear Refraction in Semiconductors,” Proc. R. Soc. London A 390, 373 (1983).
[CrossRef]

Proceedings, Optical Bistability, Dynamical Nonlinearity and Photonic Logic, Philos. Trans. R. Soc. London A (1)

B. S. Wherrett, “One Electron Theory of Nonlinear Refraction,” in Proceedings, Optical Bistability, Dynamical Nonlinearity and Photonic Logic, Philos. Trans. R. Soc. London A 313, 213 (1984).
[CrossRef]

Sov. J. Quantum Electron. (1)

S. P. Apanasevich, F. V. Karpushko, G. V. Sinitsyn, “Response Time of Bistable Devices Based on Evaporated Thin-Film Interferometers,” Sov. J. Quantum Electron. 14, 873 (1984).
[CrossRef]

Other (12)

B. S. Wherrett, D. Hutchings, D. Russels, Heriot-Watt U.; private communication (1985).

J. N. Lee, R. A. Athale, “Optical Implementation of the Triple-Matrix Product,” in Conference Digest, ICO-13, Sapporo (1984), paper A1-6.

A. A. Sawchuk, “Numerical Optical Computing Techniques,”in Conference Digest, ICO-13, Sapporo (1984), paper A1-1.

D. Psaltis, N. Farhat, “A New Approach to Optical Information Processing based on the Hopfield Model,” in Conference Digest, ICO-13, Sapporo (1984), paper A1-9.

J. L. Jewell, A. C. Gossard, W. Wiegmann, “Optical Logic in GaAs Fabry-Perot Etalons,” in Conference Digest, ICO-13, Sapporo (1984), paper A2-3.

S. D. Smith, A. C. Walker, “Optical Bistability and its Application to Computing,” in Conference Digest, ICO-13, Sapporo (1984), paper B5-10.

B. S. Wherrett, S. D. Smith, Eds., “Optical Bistability, Dynamical Nonlinearity and Photonic Logic,” Royal Society, London, 1985;also published in Philos. Trans. R. Soc. A313, 191 (1984).

C. Mead, L. Conway, An Introduction to VLSI Systems (Addison-Wesley, Reading, MA, 1980).

Z. C. P. Lee et al., Technical Digest,IEEE GaAs IC Symposium (IEEE, New York, 1983), p. 162.

C. N. Ironside, “The Spin Flip Laser Spectrometer and Aspects of the Nonlinear Optics in InSb,” Ph.D. Thesis, Heriot-Watt U., Edinburgh (unpublished) (1979).

A. C. Walker, F. A. P. Tooley, M. E. Prise, J. G. H. Mathew, A. K. Kar, M. R. Taghizadeh, S. D. Smith, “InSb Devices: Transphasors with High Gain, Bistable Switches and Sequential Logica Gates,” in Proceedings, Optical Bistability, Dynamical Nonlinearity and Photonic Logic;also published as Philos. Trans. R. Soc. London A313, 249 (1984).

H. M. Gibbs et al., “Semiconductor Nonlinear Etalons,” in Proceedings, Optical Bistability, Dynamical Nonlinearity and Photonic Logic;Philos. Trans. R. Soc. London A 313, 245 (1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

(a) Classical finite state machine not suffering from the Von Neumann bottleneck, since it can update all its memory in parallel without the need for addresses. (b) Modified finite state machine suffering from the Von Neumann bottleneck since it can only update one memory element at a time and consequently needs an address to do so.

Fig. 2
Fig. 2

Nonlinear refractive-index coefficient n2 and absorption coefficient α plotted against wave number. The solid line is a semiempirical fit similar to Eq. (4), Sec. II (after Ref. 20).

Fig. 3
Fig. 3

Dynamics of switching in a Fabry-Perot etalon—refer to text for individual diagrams.

Fig. 4
Fig. 4

Graphic solution of Eqs. (11) and (12) in Sec. III, the sequence 1–8 is equivalent to increasing and decreasing the incident power.

Fig. 5
Fig. 5

Experimental observations of a family of characteristics of an InSb bistable device obtained by changing the initial detuning from resonance of the etalon from 0 to π.

Fig. 6
Fig. 6

Power transmitted and reflected from an interference filter containing ZnSe plotted against incident power showing optical bistability.

Fig. 7
Fig. 7

Bistable action observed in an uncoated etalon of InSb when illuminated by a cw CO laser operating at a wavelength of 5.5 μm.

Fig. 8
Fig. 8

(a) Transmission characteristic of an InSb etalon; (b) change in transmission induced by the absorption of one 35-ps long pulse from a Ndr: YAG laser (1.06 μm).

Fig. 9
Fig. 9

First optical circuit: the experimental arrangement used in fabrication of an xnor gate by coupling two InSb logic gates and the characteristics of the individual and coupled gates.

Fig. 10
Fig. 10

Series of characteristics obtained by varying the initial detuning of an interference filter containing ZnSe.

Fig. 11
Fig. 11

External switching of an interference filter containing ZnSe by an argon laser. The lower figure shows the response time observed with a large spot size in samples coated onto float glass.

Fig. 12
Fig. 12

Proposals for uses of logic gates of this type.

Fig. 13
Fig. 13

Optical arrangements used in the demonstrations that the output changes in both reflection and transmission are sufficient to induce another similar gate to also switch.

Fig. 14
Fig. 14

Schematic of an optical parallel processor proposed to solve a specific physical problem, the 1-D Ising model, after Wherrett.61

Fig. 15
Fig. 15

Optical arrangement used in the first demonstration of a loop delay consisting of three interacting gates.

Fig. 16
Fig. 16

Delay loop is achieved by clocking the individual bias levels to the three gates: A, B, and C in Fig. 15 in this sequence.

Fig. 17
Fig. 17

Types of optical computer being proposed that utilize the parallelism of optics by using arrays of elements. The iteration present in the type of problem which could be solved on such a computer is achieved through use of a loop processor architecture.

Tables (1)

Tables Icon

Table I Materials in which Intrinsic Optical Bistability has been Observed

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

n = n 0 + n 2 I
N = I ω α eff τ R ,
Δ n = c π 0 Δ α ( ω ) ( ω ) 2 ( ω ) 2 d ( ω ) ,
n 2 = 4 3 π e 2 P 2 n 0 k T α eff τ R ( ω ) 3 F ( ω / E G ) ,
Re χ ( 3 ) = n 2 c 4 π 2 n 2 ( esu ) , { χ ( 3 ) ( esu ) = 9 × 10 8 4 π χ ( 3 ) [ SI ( V / m ) ] = 9 × 10 8 4 π 4 0 n 0 2 c n 2 [ SI ( cm 2 / W ) ] 2 } .
χ ( 3 ) N 0 e 4 r 4 E 3 F ( ω E ) ,
χ ( 3 ) semiconductor = e 4 P E G 4 F ( ω / E G ) .
n L = ( n o + n 2 I c ) L ,
I c = I i T ( 1 + R ) / ( 1 R ) ,
d ( δ λ ) d I i = T ( λ ) / ( T max 2 n 2 L I i d T d λ ) .
T ( λ , I i ) = I t I i = 1 1 + F sin 2 δ / 2 ,
T ( λ , I i ) = I c I i ( 1 R ) ( 1 + R ) .
I s = λ α n 2 f ( R , α L ) .
I s = λ α κ s ( δ n δ T ) L f ( R , α L ) α L ,
n 2 = δ n δ T a L L κ s ,

Metrics