Abstract

Practical lidar applications require an easy to operate compact system. Random-modulation continuous-wave (RM-CW) lidar enables us to use a cw laser with a power level of several tens of milliwatts as the light source. For this purpose, the diode laser is the most suitable candidate for a compact lidar system. Here we report construction of the first practical portable diode-laser RM-CW lidar system and its measurement of the spatial aerosol profile at nighttime. The low-level cw power and the current operational wavelength (780 nm) make the RM-CW lidar completely eye-safe by ANSI standards.

© 1986 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Laser Rangefinder model 60, Optech Inc., Downsview, Ontario, Canada.
  2. Ceilometer model TXK-3, Meisei Electric Co., Ltd.Moriya, Ibaraki, Japan.
  3. C. Werner, H. Hermann,“Application to an Eye-safe-Laser Slant Visual Range Measuring Device atMunich-Airport,” in Twelfth International Laser RadarConference, Aix en Provence, FranceB547 (1984).
  4. N. Takeuchi, N. Sugimoto, H. Baba, K. Sakurai, “Random Modualtion cw Lidar,” Appl. Opt. 22, 1382 (1983).
    [CrossRef] [PubMed]
  5. H. Baba, S. Hoshina, K. Sakurai, N. Takeuchi, “High Speed Multichannel Photon Counter for Time Resolved Laser Spectroscopy,” Rev. Sci. Instrum. 56, 1926 (1985).
    [CrossRef]

1985

H. Baba, S. Hoshina, K. Sakurai, N. Takeuchi, “High Speed Multichannel Photon Counter for Time Resolved Laser Spectroscopy,” Rev. Sci. Instrum. 56, 1926 (1985).
[CrossRef]

1983

Baba, H.

H. Baba, S. Hoshina, K. Sakurai, N. Takeuchi, “High Speed Multichannel Photon Counter for Time Resolved Laser Spectroscopy,” Rev. Sci. Instrum. 56, 1926 (1985).
[CrossRef]

N. Takeuchi, N. Sugimoto, H. Baba, K. Sakurai, “Random Modualtion cw Lidar,” Appl. Opt. 22, 1382 (1983).
[CrossRef] [PubMed]

Hermann, H.

C. Werner, H. Hermann,“Application to an Eye-safe-Laser Slant Visual Range Measuring Device atMunich-Airport,” in Twelfth International Laser RadarConference, Aix en Provence, FranceB547 (1984).

Hoshina, S.

H. Baba, S. Hoshina, K. Sakurai, N. Takeuchi, “High Speed Multichannel Photon Counter for Time Resolved Laser Spectroscopy,” Rev. Sci. Instrum. 56, 1926 (1985).
[CrossRef]

Sakurai, K.

H. Baba, S. Hoshina, K. Sakurai, N. Takeuchi, “High Speed Multichannel Photon Counter for Time Resolved Laser Spectroscopy,” Rev. Sci. Instrum. 56, 1926 (1985).
[CrossRef]

N. Takeuchi, N. Sugimoto, H. Baba, K. Sakurai, “Random Modualtion cw Lidar,” Appl. Opt. 22, 1382 (1983).
[CrossRef] [PubMed]

Sugimoto, N.

Takeuchi, N.

H. Baba, S. Hoshina, K. Sakurai, N. Takeuchi, “High Speed Multichannel Photon Counter for Time Resolved Laser Spectroscopy,” Rev. Sci. Instrum. 56, 1926 (1985).
[CrossRef]

N. Takeuchi, N. Sugimoto, H. Baba, K. Sakurai, “Random Modualtion cw Lidar,” Appl. Opt. 22, 1382 (1983).
[CrossRef] [PubMed]

Werner, C.

C. Werner, H. Hermann,“Application to an Eye-safe-Laser Slant Visual Range Measuring Device atMunich-Airport,” in Twelfth International Laser RadarConference, Aix en Provence, FranceB547 (1984).

Appl. Opt.

Rev. Sci. Instrum.

H. Baba, S. Hoshina, K. Sakurai, N. Takeuchi, “High Speed Multichannel Photon Counter for Time Resolved Laser Spectroscopy,” Rev. Sci. Instrum. 56, 1926 (1985).
[CrossRef]

Other

Laser Rangefinder model 60, Optech Inc., Downsview, Ontario, Canada.

Ceilometer model TXK-3, Meisei Electric Co., Ltd.Moriya, Ibaraki, Japan.

C. Werner, H. Hermann,“Application to an Eye-safe-Laser Slant Visual Range Measuring Device atMunich-Airport,” in Twelfth International Laser RadarConference, Aix en Provence, FranceB547 (1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Block diagram of diode laser (DL) RM-CW lidar.

Fig. 2
Fig. 2

Lidar head (transmitting and receiving unit) on a tripod.

Fig. 3
Fig. 3

A-scope of falling snow obtained after taking correlation with a modulation code. Elevation angle is 5°. Accumulation time is 20 sec. The data were taken at nighttime.

Fig. 4
Fig. 4

A-scope of smoke from a smoke candle. Other conditions are the same as in Fig. 3.

Fig. 5
Fig. 5

Spatial profile of aerosols at nighttime. Elevation angle was 5°. Accumulation time was 20 sec: (a) A-scope; (b) logarithmic plot of range-square correction of (a).

Fig. 6
Fig. 6

Temporal behavior of visibility obtained by slope method from DL RM-CW data in comparison with data obtained by a transmissometer.

Fig. 7
Fig. 7

A-scope of layered cloud structure. Elevation angle was 30°. Accumulation time was 20 sec.

Tables (1)

Tables Icon

Table 1 Specification of a Diode Laser RM-CW Lidar

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ϕ a a ( j ) i = 0 N 1 a i a i + j = { ( N + 1 ) / 2 j = 0 ( mod N ) , 0 j 0 ( mod N ) .
y i = j = 0 N 1 x i j G j + b + n i ,
z i = k = 1 M y i + ( k 1 ) N .
S l = i = 0 N 1 z i a i i .
S ̅ l = E [ S l ] = M { P 0 ( N + 1 ) G l / 2 + b }
σ ( S l ) = S ̅ l / ξ ,
SNR = S ̅ l V [ S l ] = M ξ P 0 ( N + 1 ) G l / 2 N ξ μ { P 0 ( N + 1 ) G ̅ / 2 + b } ,
G ̅ = ( 1 / N ) l = 0 N 1 G l
SNR = M ξ P 0 ( N + 1 ) G l / 2 N μ b .

Metrics