Abstract

Generalized nonimaging concentrators can be incorporated into conventional optical systems in situations where flux concentration rather than imaging is required. The parameters of the concentrator for maximum flux concentration depend on the design of the particular optical system under consideration. Rationale for determining the concentrator parameters is given for one particular optical system and the procedure used for calculation of these parameters is outlined. The calculations are done for three concentrators applicable to the optical system.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. T. Welford, R. Winston, Optics of Nonimaging Concentrators (Academic, New York, 1978).
  2. R. Winston, “Cone Collectors for Finite Sources,” Appl. Opt. 17, 688 (1978).
    [CrossRef] [PubMed]
  3. W. L. Eichhorn, “Generalized Conic Concentrators,” Appl. Opt. 21, 3887 (1982).
    [CrossRef] [PubMed]

1982 (1)

1978 (1)

Eichhorn, W. L.

Welford, W. T.

W. T. Welford, R. Winston, Optics of Nonimaging Concentrators (Academic, New York, 1978).

Winston, R.

R. Winston, “Cone Collectors for Finite Sources,” Appl. Opt. 17, 688 (1978).
[CrossRef] [PubMed]

W. T. Welford, R. Winston, Optics of Nonimaging Concentrators (Academic, New York, 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Far-infrared absolute spectrometer output optical system.

Fig. 2
Fig. 2

Location of the optical system images.

Fig. 3
Fig. 3

Compound elliptical concentrator.

Fig. 4
Fig. 4

Compound hyperbolic concentrator.

Tables (1)

Tables Icon

Table I Conic Concentrator Parameters for Variants of the Optical System in Fig. 1 (in mm)

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

F p = ( O m T ) * U / ( O m T U ) .
H c = Q * H m * ( O m T ) / ( U * O m ) .
T h = tan 1 ( H p / F e ) .
R 1 = 0.5 * | { [ S 2 + ( R 3 + P 1 ) 2 ] 1 / 2 [ S 2 + ( R 3 P 1 ) 2 ] 1 / 2 } | ,
L = S * ( R 1 + P 1 ) / ( R 3 + P 1 ) .

Metrics