Abstract

The principal complex refractive indices for blue vitriol (chalcanthite) have been derived in the infrared region of the spectrum. These values were obtained by dispersion analysis of the reflection spectra of a cube of chalcanthite taken with the electric vector at three orthogonal orientations involving two orthogonal arbitrarily oriented faces. This derivation of the optical constants in terms of the dispersion parameters, taking account of axis wander, demonstrates that it is now possible for any crystalline substance to be analyzed regardless of crystal system.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Emslie, J. R. Aronson, “Determination of the Complex Dielectric Tensor of Triclinic Crystals: Theory,” J. Opt. Soc. Am. 73, 916 (1983).
    [CrossRef]
  2. J. R. Aronson, A. G. Emslie, E. V. Miseo, E. M. Smith, P. F. Strong, “Optical Constants of Monoclinic Anisotropic Crystals: Gypsum,” Appl. Opt. 22, 4093 (1983).
    [CrossRef] [PubMed]
  3. J. R. Aronson, P. F. Strong, “Optical Constants of Minerals and Rocks,” Appl. Opt. 14, 2914 (1975).
    [CrossRef] [PubMed]
  4. J. Berger, “Vibrational Spectra and Structure of the SO4−2 Ion in Crystals of Hydrated and Anhydrous Copper Sulfate (in French),” C. R. Acad. Sci. 270, 815 (1970).
  5. G. E. Bacon, N. A. Curry, “The Water Molecules in CuSO4· 5H2O,” Proc. R. Soc. London Ser. A 266, 95 (1962).
    [CrossRef]
  6. G. R. Bird, M. Parrish, “Wire Grid as a Near-Infrared Polarizer,” J. Opt. Soc. Am. 50, 886 (1960).
    [CrossRef]
  7. L. Merten, R. Claus, “Dispersion of Dielectric Axes in Monoclinic and Triclinic Crystals Related to Lattice Dynamics,” Phys. Status Solidi B 89, 159 (1978).
    [CrossRef]
  8. P. P. Sethna, L. W. Pinkley, D. Williams, “Optical Constants of Cupric Sulfate in the Infrared,” J. Opt. Soc. Am. 67, 499 (1977).
    [CrossRef]
  9. C. S. Hurlbut, “The Jeweler's Refractometer as a Mineralogical Tool,” Am. Mineral. 69, 391 (1984).

1984 (1)

C. S. Hurlbut, “The Jeweler's Refractometer as a Mineralogical Tool,” Am. Mineral. 69, 391 (1984).

1983 (2)

1978 (1)

L. Merten, R. Claus, “Dispersion of Dielectric Axes in Monoclinic and Triclinic Crystals Related to Lattice Dynamics,” Phys. Status Solidi B 89, 159 (1978).
[CrossRef]

1977 (1)

1975 (1)

1970 (1)

J. Berger, “Vibrational Spectra and Structure of the SO4−2 Ion in Crystals of Hydrated and Anhydrous Copper Sulfate (in French),” C. R. Acad. Sci. 270, 815 (1970).

1962 (1)

G. E. Bacon, N. A. Curry, “The Water Molecules in CuSO4· 5H2O,” Proc. R. Soc. London Ser. A 266, 95 (1962).
[CrossRef]

1960 (1)

Aronson, J. R.

Bacon, G. E.

G. E. Bacon, N. A. Curry, “The Water Molecules in CuSO4· 5H2O,” Proc. R. Soc. London Ser. A 266, 95 (1962).
[CrossRef]

Berger, J.

J. Berger, “Vibrational Spectra and Structure of the SO4−2 Ion in Crystals of Hydrated and Anhydrous Copper Sulfate (in French),” C. R. Acad. Sci. 270, 815 (1970).

Bird, G. R.

Claus, R.

L. Merten, R. Claus, “Dispersion of Dielectric Axes in Monoclinic and Triclinic Crystals Related to Lattice Dynamics,” Phys. Status Solidi B 89, 159 (1978).
[CrossRef]

Curry, N. A.

G. E. Bacon, N. A. Curry, “The Water Molecules in CuSO4· 5H2O,” Proc. R. Soc. London Ser. A 266, 95 (1962).
[CrossRef]

Emslie, A. G.

Hurlbut, C. S.

C. S. Hurlbut, “The Jeweler's Refractometer as a Mineralogical Tool,” Am. Mineral. 69, 391 (1984).

Merten, L.

L. Merten, R. Claus, “Dispersion of Dielectric Axes in Monoclinic and Triclinic Crystals Related to Lattice Dynamics,” Phys. Status Solidi B 89, 159 (1978).
[CrossRef]

Miseo, E. V.

Parrish, M.

Pinkley, L. W.

Sethna, P. P.

Smith, E. M.

Strong, P. F.

Williams, D.

Am. Mineral. (1)

C. S. Hurlbut, “The Jeweler's Refractometer as a Mineralogical Tool,” Am. Mineral. 69, 391 (1984).

Appl. Opt. (2)

C. R. Acad. Sci. (1)

J. Berger, “Vibrational Spectra and Structure of the SO4−2 Ion in Crystals of Hydrated and Anhydrous Copper Sulfate (in French),” C. R. Acad. Sci. 270, 815 (1970).

J. Opt. Soc. Am. (3)

Phys. Status Solidi B (1)

L. Merten, R. Claus, “Dispersion of Dielectric Axes in Monoclinic and Triclinic Crystals Related to Lattice Dynamics,” Phys. Status Solidi B 89, 159 (1978).
[CrossRef]

Proc. R. Soc. London Ser. A (1)

G. E. Bacon, N. A. Curry, “The Water Molecules in CuSO4· 5H2O,” Proc. R. Soc. London Ser. A 266, 95 (1962).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Reflectance spectra of chalcanthite fitted with fourteen Lorentz lines.

Fig. 2
Fig. 2

Spectral absorption index of chalcanthite.

Fig. 3
Fig. 3

Spectral refractive index of chalcanthite.

Tables (2)

Tables Icon

Table I Lorentz Line Parameters for Chalcanthite, Range of Validity is 500 cm−1 < ν < 3600 cm−1

Tables Icon

Table II Angles Between Crystallographic Axes and Face Normals

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ 3 ( ɛ x x + ɛ y y + ɛ z z ) λ 2 ( ɛ x y 2 + ɛ y z 2 + ɛ z x 2 ɛ x x ɛ y y ɛ y y ɛ z z ɛ z z ɛ x x ) λ + ( ɛ x x ɛ y z 2 + ɛ y y ɛ z x 2 + ɛ z z ɛ x y 2 2 ɛ x y ɛ y z ɛ z x ɛ x x ɛ y y ɛ z z ) = 0 .

Metrics