Abstract

The optical constants of carbonaceous materials derived from different types of fuel were determined by a polarized ratio reflectance technique over a spectral range of 0.5–0.75 μm and variable incident angles to compare the relative influence of composition independent of particle size and size distribution. Optical properties of soots from acetylene, propane, and kerosene fuels and from a carbon black were measured in the 0.5–0.75-μm spectral range and the spectral optical constants calculated. Differences in optical constants were observed for soots derived from different types of fuel and for soots derived from the same type fuel when volatile adsorbed species were removed by exposure to vacuum.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Coulson, R. S. Fraser, “Radiation in the Atmosphere,” Rev. Geophys. Space Phys. 13, 732 (1975).
    [CrossRef]
  2. G. Hanel, “The Properties of Atmospheric Aerosol Particles as Functions of Relative Humidity at Thermodynamic Equilibrium Conditioins,” Adv. Geophys. 19, 73 (1976).
    [CrossRef]
  3. J. T. Twitty, J. A. Weinman, “Radiative Properties of Carbonaceous Aerosols,” J. Appl. Meteorol. 10, 725 (1971).
    [CrossRef]
  4. G. W. Grams, A. J. Dascher, C. M. Wyman, “Laser Polar Nephelometer for Airborne Measurements of Aerosol Optical Properties,” Opt. Eng. 14, 85 (1975).
    [CrossRef]
  5. M. B. Baker, “Energy Absorption of Volatile Atmospheric Aerosol Particles,” Atmos. Environ. 10, 241 (1976).
    [CrossRef]
  6. F. S. Harris, “Atmospheric Aerosols—A Literature Summary of Their Physical Characteristics and Chemical Composition,” NASA Contract. Rep. 2626 (Jan.1976).
  7. D. S. Covert, R. J. Charlson, R. Rasmussen, H. Harrison, “Atmospheric Chemistry and Air Quality,” Rev. Geophys. Space Phys. 13, 765 (1975).
    [CrossRef]
  8. P. Halpern, K. L. Coulson, “A Theoretical Investigation of the Effect of Aerosol Pollutants on Shortwave Flux Divergence in the Lower Troposphere,” J. Appl. Meteorol. 15, 464 (1976).
    [CrossRef]
  9. K. Fischer, “The Optical Constants of Atmospheric Aerosol Particles in the 7.5–12 μm Spectral Region,” Tellus 28, 3 (1976).
  10. A. Mita, K. Isono, “Effective Complex Refractive Index of Atmospheric Aerosols Containing Absorbing Substances,” J. Meteorol. Soc. Jpn. 58, 69 (1980).
  11. E. P. Shettle, R. W. Fenn, “Models of the Atmospheric Aerosols and Their Optical Properties,” AGARD Conf. Proc. 183 (1975).
  12. T. Novakov, S. G. Chang, A. B. Harku, “Sulfates as Pollution Particulates: Catalytic Formation on Carbon (Soot) Particles,” Science 186, 259 (1974).
    [CrossRef] [PubMed]
  13. L. Lederer, H. Quenzel, E. Thomalla, “The Usefulness of a Bulk Refractive Index for the Calculation of Scattering Properties at Wavelength 530 nm,” Beitr. Phys. Atmos. 56, 94 (1983).
  14. D. M. Roessler, F. R. Faxvog, R. Stevenson, G. W. Smith, “Optical Properties and Morphology of Particulate Carbon: Variation with Air/Fuel Ratio. Particulate Carbon: Formation During Combustion,” in Proceedings, International Symposium on Particulate Carbon, D. C. Siegla, G. W. Smith, Eds. (Plenum, New York, 1980).
  15. D. F. Miller, A. Levy, “Exhaust Hydrocarbon Relationships with Photochemical Aerosol Formation,” J. Air Pollut. Control Assoc. 26, 778 (1976).
    [CrossRef]
  16. P. J. Foster, C. R. Howarth, “Optical Constants of Carbons and Coals in the Infrared,” Carbon 6, 719 (1968).
    [CrossRef]
  17. W. H. Dalzell, A. F. Sarofim, “Optical Constants of Soot and Their Application to Heat Flux Calculations,” Trans. ASME, J. Heat Trans. 91, 100 (1969).
    [CrossRef]
  18. R. C. Millikan, “Optical Properties of Soot,” J. Opt. Soc. Am. 51, 698 (1961).
    [CrossRef]
  19. R. G. Delumyea, L-C. Chu, E. S. Macias, “Determination of Elemental Carbon Component of Soot in Ambient Aerosol Samples,” Atmos. Environ. 14, 647 (1980).
    [CrossRef]
  20. F. E. Volz, “Infrared Refractive Index of Atmospheric Aerosol Substances,” Appl. Opt. 11, 755 (1972).
    [CrossRef] [PubMed]
  21. L. A. Gilbert, “Refractive Indices and Absorption Coefficients of Coal in Bulk Measured in the Range 6000 to 2400 Å by a Polarized Light Technique,” Fuel 41, 351 (1962).
  22. A. D. A. Hansen, H. Rosen, T. Novakov, “Real-Time Measurement of the Absorption Coefficient of Aerosol Particles,” Appl. Opt. 21, 3060 (1982).
    [CrossRef] [PubMed]
  23. M. R. Null, W. W. Lozier, “Measurement of Spectral Reflectance and Emissivity of Specular and Diffuse Surfaces in the Carbon Arc Furnaces,” in Proceedings, Conference on Thermal Imaging Techniques, P. E. Glaser, R. F. Walker, Eds. (Plenum, New York, 1964).
  24. J. Janzen, “The Refractive Index of Colloidal Carbon,” J. Colloid Interface Sci. 69, 436 (1979).
    [CrossRef]
  25. A. B. Pluchino, S. S. Goldberg, J. M. Dowling, C. M. Randall, “Refractive-Index Measurements of Single Micron-Sized Carbon Particles,” Appl. Opt. 19, 3370 (1980).
    [CrossRef] [PubMed]
  26. S. C. Lee, C. L. Tien, “Optical Constants of Soot in Hydrocarbon Flames,” in Proceedings, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, 1981).
    [CrossRef]
  27. J. D. Felske, T. T. Charalampopulos, H. S. Hura, “Determination of the Refractive Indices of Soot Particles from the Reflectivities of Compressed Soot Pellets,” Combust. Sci. Technol. 37, 263 (1984).
    [CrossRef]
  28. C. E. Batten, “Instrument Measures Many Optical Properties in Visible and IR,” Appl. Opt. 18, 2700 (1979).
  29. C. E. Batten, “Visible and Infrared Polarization Ratio Spectroreflectometer,” U.S. Patent4,210,401 (1July1980).
  30. M. R. Querry, “Fresnel Reflectance Equations,” J. Opt. Soc. Am. 59, 876 (1969).
    [CrossRef]
  31. M. R. Querry, U. Missouri, Kansas City; unpublished data from private communication.

1984

J. D. Felske, T. T. Charalampopulos, H. S. Hura, “Determination of the Refractive Indices of Soot Particles from the Reflectivities of Compressed Soot Pellets,” Combust. Sci. Technol. 37, 263 (1984).
[CrossRef]

1983

L. Lederer, H. Quenzel, E. Thomalla, “The Usefulness of a Bulk Refractive Index for the Calculation of Scattering Properties at Wavelength 530 nm,” Beitr. Phys. Atmos. 56, 94 (1983).

1982

1980

A. B. Pluchino, S. S. Goldberg, J. M. Dowling, C. M. Randall, “Refractive-Index Measurements of Single Micron-Sized Carbon Particles,” Appl. Opt. 19, 3370 (1980).
[CrossRef] [PubMed]

A. Mita, K. Isono, “Effective Complex Refractive Index of Atmospheric Aerosols Containing Absorbing Substances,” J. Meteorol. Soc. Jpn. 58, 69 (1980).

R. G. Delumyea, L-C. Chu, E. S. Macias, “Determination of Elemental Carbon Component of Soot in Ambient Aerosol Samples,” Atmos. Environ. 14, 647 (1980).
[CrossRef]

1979

J. Janzen, “The Refractive Index of Colloidal Carbon,” J. Colloid Interface Sci. 69, 436 (1979).
[CrossRef]

C. E. Batten, “Instrument Measures Many Optical Properties in Visible and IR,” Appl. Opt. 18, 2700 (1979).

1976

D. F. Miller, A. Levy, “Exhaust Hydrocarbon Relationships with Photochemical Aerosol Formation,” J. Air Pollut. Control Assoc. 26, 778 (1976).
[CrossRef]

G. Hanel, “The Properties of Atmospheric Aerosol Particles as Functions of Relative Humidity at Thermodynamic Equilibrium Conditioins,” Adv. Geophys. 19, 73 (1976).
[CrossRef]

M. B. Baker, “Energy Absorption of Volatile Atmospheric Aerosol Particles,” Atmos. Environ. 10, 241 (1976).
[CrossRef]

P. Halpern, K. L. Coulson, “A Theoretical Investigation of the Effect of Aerosol Pollutants on Shortwave Flux Divergence in the Lower Troposphere,” J. Appl. Meteorol. 15, 464 (1976).
[CrossRef]

K. Fischer, “The Optical Constants of Atmospheric Aerosol Particles in the 7.5–12 μm Spectral Region,” Tellus 28, 3 (1976).

1975

D. S. Covert, R. J. Charlson, R. Rasmussen, H. Harrison, “Atmospheric Chemistry and Air Quality,” Rev. Geophys. Space Phys. 13, 765 (1975).
[CrossRef]

K. L. Coulson, R. S. Fraser, “Radiation in the Atmosphere,” Rev. Geophys. Space Phys. 13, 732 (1975).
[CrossRef]

G. W. Grams, A. J. Dascher, C. M. Wyman, “Laser Polar Nephelometer for Airborne Measurements of Aerosol Optical Properties,” Opt. Eng. 14, 85 (1975).
[CrossRef]

E. P. Shettle, R. W. Fenn, “Models of the Atmospheric Aerosols and Their Optical Properties,” AGARD Conf. Proc. 183 (1975).

1974

T. Novakov, S. G. Chang, A. B. Harku, “Sulfates as Pollution Particulates: Catalytic Formation on Carbon (Soot) Particles,” Science 186, 259 (1974).
[CrossRef] [PubMed]

1972

1971

J. T. Twitty, J. A. Weinman, “Radiative Properties of Carbonaceous Aerosols,” J. Appl. Meteorol. 10, 725 (1971).
[CrossRef]

1969

W. H. Dalzell, A. F. Sarofim, “Optical Constants of Soot and Their Application to Heat Flux Calculations,” Trans. ASME, J. Heat Trans. 91, 100 (1969).
[CrossRef]

M. R. Querry, “Fresnel Reflectance Equations,” J. Opt. Soc. Am. 59, 876 (1969).
[CrossRef]

1968

P. J. Foster, C. R. Howarth, “Optical Constants of Carbons and Coals in the Infrared,” Carbon 6, 719 (1968).
[CrossRef]

1962

L. A. Gilbert, “Refractive Indices and Absorption Coefficients of Coal in Bulk Measured in the Range 6000 to 2400 Å by a Polarized Light Technique,” Fuel 41, 351 (1962).

1961

Baker, M. B.

M. B. Baker, “Energy Absorption of Volatile Atmospheric Aerosol Particles,” Atmos. Environ. 10, 241 (1976).
[CrossRef]

Batten, C. E.

C. E. Batten, “Instrument Measures Many Optical Properties in Visible and IR,” Appl. Opt. 18, 2700 (1979).

C. E. Batten, “Visible and Infrared Polarization Ratio Spectroreflectometer,” U.S. Patent4,210,401 (1July1980).

Chang, S. G.

T. Novakov, S. G. Chang, A. B. Harku, “Sulfates as Pollution Particulates: Catalytic Formation on Carbon (Soot) Particles,” Science 186, 259 (1974).
[CrossRef] [PubMed]

Charalampopulos, T. T.

J. D. Felske, T. T. Charalampopulos, H. S. Hura, “Determination of the Refractive Indices of Soot Particles from the Reflectivities of Compressed Soot Pellets,” Combust. Sci. Technol. 37, 263 (1984).
[CrossRef]

Charlson, R. J.

D. S. Covert, R. J. Charlson, R. Rasmussen, H. Harrison, “Atmospheric Chemistry and Air Quality,” Rev. Geophys. Space Phys. 13, 765 (1975).
[CrossRef]

Chu, L-C.

R. G. Delumyea, L-C. Chu, E. S. Macias, “Determination of Elemental Carbon Component of Soot in Ambient Aerosol Samples,” Atmos. Environ. 14, 647 (1980).
[CrossRef]

Coulson, K. L.

P. Halpern, K. L. Coulson, “A Theoretical Investigation of the Effect of Aerosol Pollutants on Shortwave Flux Divergence in the Lower Troposphere,” J. Appl. Meteorol. 15, 464 (1976).
[CrossRef]

K. L. Coulson, R. S. Fraser, “Radiation in the Atmosphere,” Rev. Geophys. Space Phys. 13, 732 (1975).
[CrossRef]

Covert, D. S.

D. S. Covert, R. J. Charlson, R. Rasmussen, H. Harrison, “Atmospheric Chemistry and Air Quality,” Rev. Geophys. Space Phys. 13, 765 (1975).
[CrossRef]

Dalzell, W. H.

W. H. Dalzell, A. F. Sarofim, “Optical Constants of Soot and Their Application to Heat Flux Calculations,” Trans. ASME, J. Heat Trans. 91, 100 (1969).
[CrossRef]

Dascher, A. J.

G. W. Grams, A. J. Dascher, C. M. Wyman, “Laser Polar Nephelometer for Airborne Measurements of Aerosol Optical Properties,” Opt. Eng. 14, 85 (1975).
[CrossRef]

Delumyea, R. G.

R. G. Delumyea, L-C. Chu, E. S. Macias, “Determination of Elemental Carbon Component of Soot in Ambient Aerosol Samples,” Atmos. Environ. 14, 647 (1980).
[CrossRef]

Dowling, J. M.

Faxvog, F. R.

D. M. Roessler, F. R. Faxvog, R. Stevenson, G. W. Smith, “Optical Properties and Morphology of Particulate Carbon: Variation with Air/Fuel Ratio. Particulate Carbon: Formation During Combustion,” in Proceedings, International Symposium on Particulate Carbon, D. C. Siegla, G. W. Smith, Eds. (Plenum, New York, 1980).

Felske, J. D.

J. D. Felske, T. T. Charalampopulos, H. S. Hura, “Determination of the Refractive Indices of Soot Particles from the Reflectivities of Compressed Soot Pellets,” Combust. Sci. Technol. 37, 263 (1984).
[CrossRef]

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models of the Atmospheric Aerosols and Their Optical Properties,” AGARD Conf. Proc. 183 (1975).

Fischer, K.

K. Fischer, “The Optical Constants of Atmospheric Aerosol Particles in the 7.5–12 μm Spectral Region,” Tellus 28, 3 (1976).

Foster, P. J.

P. J. Foster, C. R. Howarth, “Optical Constants of Carbons and Coals in the Infrared,” Carbon 6, 719 (1968).
[CrossRef]

Fraser, R. S.

K. L. Coulson, R. S. Fraser, “Radiation in the Atmosphere,” Rev. Geophys. Space Phys. 13, 732 (1975).
[CrossRef]

Gilbert, L. A.

L. A. Gilbert, “Refractive Indices and Absorption Coefficients of Coal in Bulk Measured in the Range 6000 to 2400 Å by a Polarized Light Technique,” Fuel 41, 351 (1962).

Goldberg, S. S.

Grams, G. W.

G. W. Grams, A. J. Dascher, C. M. Wyman, “Laser Polar Nephelometer for Airborne Measurements of Aerosol Optical Properties,” Opt. Eng. 14, 85 (1975).
[CrossRef]

Halpern, P.

P. Halpern, K. L. Coulson, “A Theoretical Investigation of the Effect of Aerosol Pollutants on Shortwave Flux Divergence in the Lower Troposphere,” J. Appl. Meteorol. 15, 464 (1976).
[CrossRef]

Hanel, G.

G. Hanel, “The Properties of Atmospheric Aerosol Particles as Functions of Relative Humidity at Thermodynamic Equilibrium Conditioins,” Adv. Geophys. 19, 73 (1976).
[CrossRef]

Hansen, A. D. A.

Harku, A. B.

T. Novakov, S. G. Chang, A. B. Harku, “Sulfates as Pollution Particulates: Catalytic Formation on Carbon (Soot) Particles,” Science 186, 259 (1974).
[CrossRef] [PubMed]

Harris, F. S.

F. S. Harris, “Atmospheric Aerosols—A Literature Summary of Their Physical Characteristics and Chemical Composition,” NASA Contract. Rep. 2626 (Jan.1976).

Harrison, H.

D. S. Covert, R. J. Charlson, R. Rasmussen, H. Harrison, “Atmospheric Chemistry and Air Quality,” Rev. Geophys. Space Phys. 13, 765 (1975).
[CrossRef]

Howarth, C. R.

P. J. Foster, C. R. Howarth, “Optical Constants of Carbons and Coals in the Infrared,” Carbon 6, 719 (1968).
[CrossRef]

Hura, H. S.

J. D. Felske, T. T. Charalampopulos, H. S. Hura, “Determination of the Refractive Indices of Soot Particles from the Reflectivities of Compressed Soot Pellets,” Combust. Sci. Technol. 37, 263 (1984).
[CrossRef]

Isono, K.

A. Mita, K. Isono, “Effective Complex Refractive Index of Atmospheric Aerosols Containing Absorbing Substances,” J. Meteorol. Soc. Jpn. 58, 69 (1980).

Janzen, J.

J. Janzen, “The Refractive Index of Colloidal Carbon,” J. Colloid Interface Sci. 69, 436 (1979).
[CrossRef]

Lederer, L.

L. Lederer, H. Quenzel, E. Thomalla, “The Usefulness of a Bulk Refractive Index for the Calculation of Scattering Properties at Wavelength 530 nm,” Beitr. Phys. Atmos. 56, 94 (1983).

Lee, S. C.

S. C. Lee, C. L. Tien, “Optical Constants of Soot in Hydrocarbon Flames,” in Proceedings, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, 1981).
[CrossRef]

Levy, A.

D. F. Miller, A. Levy, “Exhaust Hydrocarbon Relationships with Photochemical Aerosol Formation,” J. Air Pollut. Control Assoc. 26, 778 (1976).
[CrossRef]

Lozier, W. W.

M. R. Null, W. W. Lozier, “Measurement of Spectral Reflectance and Emissivity of Specular and Diffuse Surfaces in the Carbon Arc Furnaces,” in Proceedings, Conference on Thermal Imaging Techniques, P. E. Glaser, R. F. Walker, Eds. (Plenum, New York, 1964).

Macias, E. S.

R. G. Delumyea, L-C. Chu, E. S. Macias, “Determination of Elemental Carbon Component of Soot in Ambient Aerosol Samples,” Atmos. Environ. 14, 647 (1980).
[CrossRef]

Miller, D. F.

D. F. Miller, A. Levy, “Exhaust Hydrocarbon Relationships with Photochemical Aerosol Formation,” J. Air Pollut. Control Assoc. 26, 778 (1976).
[CrossRef]

Millikan, R. C.

Mita, A.

A. Mita, K. Isono, “Effective Complex Refractive Index of Atmospheric Aerosols Containing Absorbing Substances,” J. Meteorol. Soc. Jpn. 58, 69 (1980).

Novakov, T.

A. D. A. Hansen, H. Rosen, T. Novakov, “Real-Time Measurement of the Absorption Coefficient of Aerosol Particles,” Appl. Opt. 21, 3060 (1982).
[CrossRef] [PubMed]

T. Novakov, S. G. Chang, A. B. Harku, “Sulfates as Pollution Particulates: Catalytic Formation on Carbon (Soot) Particles,” Science 186, 259 (1974).
[CrossRef] [PubMed]

Null, M. R.

M. R. Null, W. W. Lozier, “Measurement of Spectral Reflectance and Emissivity of Specular and Diffuse Surfaces in the Carbon Arc Furnaces,” in Proceedings, Conference on Thermal Imaging Techniques, P. E. Glaser, R. F. Walker, Eds. (Plenum, New York, 1964).

Pluchino, A. B.

Quenzel, H.

L. Lederer, H. Quenzel, E. Thomalla, “The Usefulness of a Bulk Refractive Index for the Calculation of Scattering Properties at Wavelength 530 nm,” Beitr. Phys. Atmos. 56, 94 (1983).

Querry, M. R.

M. R. Querry, “Fresnel Reflectance Equations,” J. Opt. Soc. Am. 59, 876 (1969).
[CrossRef]

M. R. Querry, U. Missouri, Kansas City; unpublished data from private communication.

Randall, C. M.

Rasmussen, R.

D. S. Covert, R. J. Charlson, R. Rasmussen, H. Harrison, “Atmospheric Chemistry and Air Quality,” Rev. Geophys. Space Phys. 13, 765 (1975).
[CrossRef]

Roessler, D. M.

D. M. Roessler, F. R. Faxvog, R. Stevenson, G. W. Smith, “Optical Properties and Morphology of Particulate Carbon: Variation with Air/Fuel Ratio. Particulate Carbon: Formation During Combustion,” in Proceedings, International Symposium on Particulate Carbon, D. C. Siegla, G. W. Smith, Eds. (Plenum, New York, 1980).

Rosen, H.

Sarofim, A. F.

W. H. Dalzell, A. F. Sarofim, “Optical Constants of Soot and Their Application to Heat Flux Calculations,” Trans. ASME, J. Heat Trans. 91, 100 (1969).
[CrossRef]

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models of the Atmospheric Aerosols and Their Optical Properties,” AGARD Conf. Proc. 183 (1975).

Smith, G. W.

D. M. Roessler, F. R. Faxvog, R. Stevenson, G. W. Smith, “Optical Properties and Morphology of Particulate Carbon: Variation with Air/Fuel Ratio. Particulate Carbon: Formation During Combustion,” in Proceedings, International Symposium on Particulate Carbon, D. C. Siegla, G. W. Smith, Eds. (Plenum, New York, 1980).

Stevenson, R.

D. M. Roessler, F. R. Faxvog, R. Stevenson, G. W. Smith, “Optical Properties and Morphology of Particulate Carbon: Variation with Air/Fuel Ratio. Particulate Carbon: Formation During Combustion,” in Proceedings, International Symposium on Particulate Carbon, D. C. Siegla, G. W. Smith, Eds. (Plenum, New York, 1980).

Thomalla, E.

L. Lederer, H. Quenzel, E. Thomalla, “The Usefulness of a Bulk Refractive Index for the Calculation of Scattering Properties at Wavelength 530 nm,” Beitr. Phys. Atmos. 56, 94 (1983).

Tien, C. L.

S. C. Lee, C. L. Tien, “Optical Constants of Soot in Hydrocarbon Flames,” in Proceedings, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, 1981).
[CrossRef]

Twitty, J. T.

J. T. Twitty, J. A. Weinman, “Radiative Properties of Carbonaceous Aerosols,” J. Appl. Meteorol. 10, 725 (1971).
[CrossRef]

Volz, F. E.

Weinman, J. A.

J. T. Twitty, J. A. Weinman, “Radiative Properties of Carbonaceous Aerosols,” J. Appl. Meteorol. 10, 725 (1971).
[CrossRef]

Wyman, C. M.

G. W. Grams, A. J. Dascher, C. M. Wyman, “Laser Polar Nephelometer for Airborne Measurements of Aerosol Optical Properties,” Opt. Eng. 14, 85 (1975).
[CrossRef]

Adv. Geophys.

G. Hanel, “The Properties of Atmospheric Aerosol Particles as Functions of Relative Humidity at Thermodynamic Equilibrium Conditioins,” Adv. Geophys. 19, 73 (1976).
[CrossRef]

AGARD Conf. Proc. 183

E. P. Shettle, R. W. Fenn, “Models of the Atmospheric Aerosols and Their Optical Properties,” AGARD Conf. Proc. 183 (1975).

Appl. Opt.

Atmos. Environ.

R. G. Delumyea, L-C. Chu, E. S. Macias, “Determination of Elemental Carbon Component of Soot in Ambient Aerosol Samples,” Atmos. Environ. 14, 647 (1980).
[CrossRef]

M. B. Baker, “Energy Absorption of Volatile Atmospheric Aerosol Particles,” Atmos. Environ. 10, 241 (1976).
[CrossRef]

Beitr. Phys. Atmos.

L. Lederer, H. Quenzel, E. Thomalla, “The Usefulness of a Bulk Refractive Index for the Calculation of Scattering Properties at Wavelength 530 nm,” Beitr. Phys. Atmos. 56, 94 (1983).

Carbon

P. J. Foster, C. R. Howarth, “Optical Constants of Carbons and Coals in the Infrared,” Carbon 6, 719 (1968).
[CrossRef]

Combust. Sci. Technol.

J. D. Felske, T. T. Charalampopulos, H. S. Hura, “Determination of the Refractive Indices of Soot Particles from the Reflectivities of Compressed Soot Pellets,” Combust. Sci. Technol. 37, 263 (1984).
[CrossRef]

Fuel

L. A. Gilbert, “Refractive Indices and Absorption Coefficients of Coal in Bulk Measured in the Range 6000 to 2400 Å by a Polarized Light Technique,” Fuel 41, 351 (1962).

J. Air Pollut. Control Assoc.

D. F. Miller, A. Levy, “Exhaust Hydrocarbon Relationships with Photochemical Aerosol Formation,” J. Air Pollut. Control Assoc. 26, 778 (1976).
[CrossRef]

J. Appl. Meteorol.

J. T. Twitty, J. A. Weinman, “Radiative Properties of Carbonaceous Aerosols,” J. Appl. Meteorol. 10, 725 (1971).
[CrossRef]

P. Halpern, K. L. Coulson, “A Theoretical Investigation of the Effect of Aerosol Pollutants on Shortwave Flux Divergence in the Lower Troposphere,” J. Appl. Meteorol. 15, 464 (1976).
[CrossRef]

J. Colloid Interface Sci.

J. Janzen, “The Refractive Index of Colloidal Carbon,” J. Colloid Interface Sci. 69, 436 (1979).
[CrossRef]

J. Meteorol. Soc. Jpn.

A. Mita, K. Isono, “Effective Complex Refractive Index of Atmospheric Aerosols Containing Absorbing Substances,” J. Meteorol. Soc. Jpn. 58, 69 (1980).

J. Opt. Soc. Am.

Opt. Eng.

G. W. Grams, A. J. Dascher, C. M. Wyman, “Laser Polar Nephelometer for Airborne Measurements of Aerosol Optical Properties,” Opt. Eng. 14, 85 (1975).
[CrossRef]

Rev. Geophys. Space Phys.

K. L. Coulson, R. S. Fraser, “Radiation in the Atmosphere,” Rev. Geophys. Space Phys. 13, 732 (1975).
[CrossRef]

D. S. Covert, R. J. Charlson, R. Rasmussen, H. Harrison, “Atmospheric Chemistry and Air Quality,” Rev. Geophys. Space Phys. 13, 765 (1975).
[CrossRef]

Science

T. Novakov, S. G. Chang, A. B. Harku, “Sulfates as Pollution Particulates: Catalytic Formation on Carbon (Soot) Particles,” Science 186, 259 (1974).
[CrossRef] [PubMed]

Tellus

K. Fischer, “The Optical Constants of Atmospheric Aerosol Particles in the 7.5–12 μm Spectral Region,” Tellus 28, 3 (1976).

Trans. ASME, J. Heat Trans.

W. H. Dalzell, A. F. Sarofim, “Optical Constants of Soot and Their Application to Heat Flux Calculations,” Trans. ASME, J. Heat Trans. 91, 100 (1969).
[CrossRef]

Other

D. M. Roessler, F. R. Faxvog, R. Stevenson, G. W. Smith, “Optical Properties and Morphology of Particulate Carbon: Variation with Air/Fuel Ratio. Particulate Carbon: Formation During Combustion,” in Proceedings, International Symposium on Particulate Carbon, D. C. Siegla, G. W. Smith, Eds. (Plenum, New York, 1980).

F. S. Harris, “Atmospheric Aerosols—A Literature Summary of Their Physical Characteristics and Chemical Composition,” NASA Contract. Rep. 2626 (Jan.1976).

S. C. Lee, C. L. Tien, “Optical Constants of Soot in Hydrocarbon Flames,” in Proceedings, Eighteenth Symposium (International) on Combustion (Combustion Institute, Pittsburgh, 1981).
[CrossRef]

M. R. Null, W. W. Lozier, “Measurement of Spectral Reflectance and Emissivity of Specular and Diffuse Surfaces in the Carbon Arc Furnaces,” in Proceedings, Conference on Thermal Imaging Techniques, P. E. Glaser, R. F. Walker, Eds. (Plenum, New York, 1964).

M. R. Querry, U. Missouri, Kansas City; unpublished data from private communication.

C. E. Batten, “Visible and Infrared Polarization Ratio Spectroreflectometer,” U.S. Patent4,210,401 (1July1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Visible-IR polarization ratio spectroreflectometer.

Fig. 2
Fig. 2

Parallel polarized reflectance of soots.

Fig. 3
Fig. 3

Perpendicular polarized reflectance of soots.

Fig. 4
Fig. 4

Polarization ratio reflectance of soots.

Fig. 5
Fig. 5

Spectral refractive index of soots.

Fig. 6
Fig. 6

Spectral absorption index of soots.

Tables (2)

Tables Icon

Table I Approximate H/C Ratios of Soots

Tables Icon

Table II Optical Constants of Kerosene and Vacuum-Exposed Kerosene Obtained from Two Independent Spectral Reflectance Measurements with Same Sample Pellets

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Q = 0.5 cos ( 2 θ ) cos θ ( H sin 2 θ F cos 2 θ ) ,
F = R s + 1 R s 1 , H = R p + R s R p R s , P 2 = Q 2 2 F Q cos θ cos 2 θ ,
n = { 1 / 2 ( Q 2 P 2 + 2 sin 2 θ ) + [ ( Q 2 P 2 + sin 2 θ ) 2 + 4 P 2 Q 2 ] 1 / 2 } 1 / 2 ,
Q P = n k .

Metrics