Abstract

On the basis that metal films possess the properties of high reflection for infrared and induced transmission for visible bands, the authors have designed a broadband dichroic filter capable of transmitting visible and reflecting infrared bands through stacking to form a combined dielectric–metal–dielectric thin-film system. Experimental results show its transmittance in the visible region is 80–88%, while its reflectance in the intermediate and far-infrared regions is 90%.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), Sec.13.
  2. B. Carli, “Reflectivity of Metallic Films in the Infrared,” J. Opt.Soc. Am. 67, 908 (1977).
    [CrossRef]
  3. P. W. Baumeister, “Radiant Power Flow and Absorptance in Thin Films,” Appl. Opt. 8, 423 (1969).
    [CrossRef] [PubMed]

1977 (1)

B. Carli, “Reflectivity of Metallic Films in the Infrared,” J. Opt.Soc. Am. 67, 908 (1977).
[CrossRef]

1969 (1)

Baumeister, P. W.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), Sec.13.

Carli, B.

B. Carli, “Reflectivity of Metallic Films in the Infrared,” J. Opt.Soc. Am. 67, 908 (1977).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), Sec.13.

Appl. Opt. (1)

J. Opt.Soc. Am. (1)

B. Carli, “Reflectivity of Metallic Films in the Infrared,” J. Opt.Soc. Am. 67, 908 (1977).
[CrossRef]

Other (1)

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), Sec.13.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram showing incidence of planar wave on the metal film of thickness h.

Fig. 2
Fig. 2

Schematic diagram showing the structure of the film system with the metal layer.

Fig. 3
Fig. 3

Equivalent diagram used in designing the antireflection coating.

Fig. 4
Fig. 4

Transmittance curve of 0.4–1.1 μm.

Fig. 5
Fig. 5

Reflectance curve of the intermediate and far-infrared regions.

Tables (1)

Tables Icon

Table I Results of Calculations of Infrared Reflectance In the 3–14-μm Spectral Region

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

R = ρ 12 2 exp ( 2 k 2 η ) + ρ 23 2 exp ( 2 k 2 η ) + 2 ρ 12 ρ 23 cos ( φ 23 φ 12 + 2 n 2 η ) exp ( 2 k 2 η ) + ρ 12 2 ρ 23 2 exp ( 2 k 2 η ) + 2 ρ 12 ρ 23 cos ( φ 12 + φ 23 + 2 n 2 η ) ,
ψ a = s b / s a = T / ( 1 R ) ,
S = c 4 π ( E × H ) ,
ψ a = Re { E b ( r ) H b * ( r ) } / Re { E a ( r ) H a * ( r ) } ,
( Ê a Ĥ a ) = [ cos δ 2 i n 2 i k 2 sin δ 2 i ( n 2 i k 2 ) sin δ 2 cos δ 2 ] ( Ê b Ĥ b ) = ( a 1 + i b 1 a 3 + i b 3 a 2 + i b 2 a 4 + i b 4 ) ( Ê a Ĥ a ) ,
δ 2 = 2 π λ ( n 2 i k 2 ) h , and a j and b j
ψ a = x / [ c 0 + c 1 x + c 2 z + c 3 ( x 2 + z 2 ) ] ,
c 0 = a 1 a 2 + b 1 b 2 , c 1 = a 2 a 3 + a 1 a 4 + b 2 b 3 + b 1 b 4 , c 2 = b 1 b 4 + a 3 b 2 a 1 b 4 b 3 a 2 , c 3 = a 3 a 4 + b 3 b 4 .
x max = ( c 0 c 3 0.25 c 2 2 ) 1 / 2 / c ,
z max = c 2 / 2 c 3 ,
ψ a max = 1 / ( c 1 + 2 c 0 c 3 0.25 c 2 2 ) .
R = | n 0 Ĝ n 0 + Ĝ | 2 ,
Ĝ = F 1 cos δ 1 + i ( N 1 sin δ 1 + F 2 cos δ 1 ) ( cos δ 1 F 2 N 1 sin δ 1 ) + i F 1 sin δ 1 N 1 .
N 1 = F 2 2 + F 1 ( F 1 1 ) F 1 1 ,
δ 1 = tan 1 [ ( 1 F 1 ) N 1 / F 2 ] .
R = | n 0 Ĝ n 0 + Ĝ | 2 = ( n 0 p ) 2 + q 2 ( n 0 + p ) 2 + q 2 = ( 1 p ) 2 + q 2 ( 1 + p ) 2 + q 2 .

Metrics