Abstract

In this paper we present an analysis of pressure-volume data for certain optical fluids, which characterizes them by two parameters: their bulk moduli and the pressure derivative of their bulk moduli, both evaluated at zero pressure. We then relate their refractive-index changes to density and pressure using this analysis and the Lorentz-Lorenz equation with a density-dependent polarizability. An example of the use of such fluids in a fiber-optic pressure gauge being developed at Sandia is also discussed.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. P. Cargille Laboratories, Inc., 55 Commerce Rd., Cedar Grove, N.J.07009.
  2. Work performed by the National Bureau of Standards for Sandia National Laboratories under contract 71-7913. The report is unpublished but available on request.
  3. See, for example, L. C. Chhabildas, A. L. Ruoff, “Isothermal Equation of State for Sodium Chloride by the Length-Change-Measurement Technique,” J. Appl. Phys. 47, 4182 (1976).
    [CrossRef]
  4. K. Vedam, P. Limsuwan, “Piezo- and Elasto-optic Properties of Liquids under High Pressure. II: Refractive Index vs Density,” J. Chem. Phys. 69, 4772 (1978).
    [CrossRef]
  5. F. I. Mopsik, “Dielectric Properties of Slightly Polar Organic Liquids as a Function of Pressure, Volume, and Density,” J. Chem. Phys. 50, 2559 (1969).
    [CrossRef]
  6. R. Sacher, Cargille Laboratories; private communication.
  7. K. Vedam, P. Limsuwan, “Piezo- and Elasto-optic Properties of Liquids under High Pressure. I: Refractive Index vs Pressure and Strain,” J. Chem. Phys. 69, 4762 (1978).
    [CrossRef]

1978 (2)

K. Vedam, P. Limsuwan, “Piezo- and Elasto-optic Properties of Liquids under High Pressure. II: Refractive Index vs Density,” J. Chem. Phys. 69, 4772 (1978).
[CrossRef]

K. Vedam, P. Limsuwan, “Piezo- and Elasto-optic Properties of Liquids under High Pressure. I: Refractive Index vs Pressure and Strain,” J. Chem. Phys. 69, 4762 (1978).
[CrossRef]

1976 (1)

See, for example, L. C. Chhabildas, A. L. Ruoff, “Isothermal Equation of State for Sodium Chloride by the Length-Change-Measurement Technique,” J. Appl. Phys. 47, 4182 (1976).
[CrossRef]

1969 (1)

F. I. Mopsik, “Dielectric Properties of Slightly Polar Organic Liquids as a Function of Pressure, Volume, and Density,” J. Chem. Phys. 50, 2559 (1969).
[CrossRef]

Chhabildas, L. C.

See, for example, L. C. Chhabildas, A. L. Ruoff, “Isothermal Equation of State for Sodium Chloride by the Length-Change-Measurement Technique,” J. Appl. Phys. 47, 4182 (1976).
[CrossRef]

Limsuwan, P.

K. Vedam, P. Limsuwan, “Piezo- and Elasto-optic Properties of Liquids under High Pressure. I: Refractive Index vs Pressure and Strain,” J. Chem. Phys. 69, 4762 (1978).
[CrossRef]

K. Vedam, P. Limsuwan, “Piezo- and Elasto-optic Properties of Liquids under High Pressure. II: Refractive Index vs Density,” J. Chem. Phys. 69, 4772 (1978).
[CrossRef]

Mopsik, F. I.

F. I. Mopsik, “Dielectric Properties of Slightly Polar Organic Liquids as a Function of Pressure, Volume, and Density,” J. Chem. Phys. 50, 2559 (1969).
[CrossRef]

Ruoff, A. L.

See, for example, L. C. Chhabildas, A. L. Ruoff, “Isothermal Equation of State for Sodium Chloride by the Length-Change-Measurement Technique,” J. Appl. Phys. 47, 4182 (1976).
[CrossRef]

Sacher, R.

R. Sacher, Cargille Laboratories; private communication.

Vedam, K.

K. Vedam, P. Limsuwan, “Piezo- and Elasto-optic Properties of Liquids under High Pressure. I: Refractive Index vs Pressure and Strain,” J. Chem. Phys. 69, 4762 (1978).
[CrossRef]

K. Vedam, P. Limsuwan, “Piezo- and Elasto-optic Properties of Liquids under High Pressure. II: Refractive Index vs Density,” J. Chem. Phys. 69, 4772 (1978).
[CrossRef]

J. Appl. Phys. (1)

See, for example, L. C. Chhabildas, A. L. Ruoff, “Isothermal Equation of State for Sodium Chloride by the Length-Change-Measurement Technique,” J. Appl. Phys. 47, 4182 (1976).
[CrossRef]

J. Chem. Phys. (3)

K. Vedam, P. Limsuwan, “Piezo- and Elasto-optic Properties of Liquids under High Pressure. II: Refractive Index vs Density,” J. Chem. Phys. 69, 4772 (1978).
[CrossRef]

F. I. Mopsik, “Dielectric Properties of Slightly Polar Organic Liquids as a Function of Pressure, Volume, and Density,” J. Chem. Phys. 50, 2559 (1969).
[CrossRef]

K. Vedam, P. Limsuwan, “Piezo- and Elasto-optic Properties of Liquids under High Pressure. I: Refractive Index vs Pressure and Strain,” J. Chem. Phys. 69, 4762 (1978).
[CrossRef]

Other (3)

R. P. Cargille Laboratories, Inc., 55 Commerce Rd., Cedar Grove, N.J.07009.

Work performed by the National Bureau of Standards for Sandia National Laboratories under contract 71-7913. The report is unpublished but available on request.

R. Sacher, Cargille Laboratories; private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Average bulk modules B ¯ vs average pressure P ¯ for the fluid having index of 1.4321 ⊙, calculated from data according to Eq. (5); —, fitted curve.

Fig. 2
Fig. 2

B ¯ vs P ¯ for fluid having an index of 1.49.

Fig. 3
Fig. 3

Murnaghan's equation fitted to data points for the fluid having an index of 1.4321 ⊙, data points, —, fitted curve.

Fig. 4
Fig. 4

Murnaghan's equation fitted to data points for fluid having an index of 1.49.

Fig. 5
Fig. 5

Refractive index vs density for the fluid having an index of 1.4321 ⊙, calculated using Eqs. (6), and (7); ×, calculated ignoring Eq. (7).

Fig. 6
Fig. 6

Refractive index vs density for the fluid having an index of 1.49.

Fig. 7
Fig. 7

Refractive index vs pressure for the fluid having an index of 1.4321 ⊙, calculated using Eqs. (2), (6), and (7); ×, calculated ignoring Eq. (7).

Fig. 8
Fig. 8

Refractive index vs pressure for the fluid having an index of 1.49.

Fig. 9
Fig. 9

Transmission ratio vs fluid index for straight glass fiber surrounded by an optical fluid.

Tables (2)

Tables Icon

Table I Bulk Modulus Parameters

Tables Icon

Table II Refractive-Index Parameters

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

B t V ( P / V ) t = a + b P + c P 2 + ,
( V 0 / V ) = ( ρ / ρ 0 ) = ( 1 + b P / a ) 1 / b ,
( ρ / ρ 0 ) ( ρ / ρ 0 ) 1 + ( ρ / ρ 0 ) a ] a = a 1 δ a 1 + ( ρ / ρ 0 ) b ] b = b 1 δ b 1 ,
B ¯ = ( V n + V n 1 ) ( P n P n 1 ) / 2 ( V n 1 V n ) , P ¯ = ( P n + P n 1 ) / 2 .
[ B ¯ / ( Δ V ) ] 2 = B ¯ 2 / ( Δ V ) 2 ,
( n 2 1 ) / ( n 2 + 2 ) = k ρ ,
d k / d ρ = ( 6 n / α ) d n / d t ( n 2 1 ) ( n 2 + 2 ) ( n 2 + 2 ) 2 ρ 2 ,
N . A . = n c 2 n 1 2 ,

Metrics