Abstract

A new phase zone plate with suppressed higher-order flux is proposed and optimum design calculations are made for Al. While the first-order collecting efficiency is equal to that of conventional Fresnel zone plates (∼10%), the ratio of the higher-order flux energy to the first-order energy can be suppressed to <10−3–10−6 in the 300–600-Å wavelength range.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. E. Myers, “Studies of Transmission Zone Plates,” Am. J. Phys. 19, 359 (1951).
    [CrossRef]
  2. B. Niemann, D. Rudolph, G. Schmahl, “Soft-X Ray Imaging Zone Plates with Large Zone Numbers for Microscopic and Spectroscopic Applications,” Opt. Commun. 12, 160 (1974).
    [CrossRef]
  3. G. S. Waldman, “Variations on Fresnel Zone Plate,” J. Opt. Soc. Am. 56, 215 (1966).
    [CrossRef]
  4. L. F. Collins, “Diffraction Theory Description of Bleached Holograms,” Appl. Opt. 7, 1236 (1968).
    [CrossRef] [PubMed]
  5. J. Kirz, “Phase Zone Plates for X Rays and the Extreme UV,” J. Opt. Soc. Am. 64, 301 (1974).
    [CrossRef]
  6. A. R. Jones, “The Focal Properties of Phase Zone Plates,” Br. J. Appl. Phys. 2, 1789 (1969).
  7. H.-J. Hagemann, W. Gudat, C. Kunz, “Optical Constants from the Far Infrared to the X-Ray Region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O2,” J. Opt. Soc. Am. 65, 742 (1975).
    [CrossRef]

1975

1974

B. Niemann, D. Rudolph, G. Schmahl, “Soft-X Ray Imaging Zone Plates with Large Zone Numbers for Microscopic and Spectroscopic Applications,” Opt. Commun. 12, 160 (1974).
[CrossRef]

J. Kirz, “Phase Zone Plates for X Rays and the Extreme UV,” J. Opt. Soc. Am. 64, 301 (1974).
[CrossRef]

1969

A. R. Jones, “The Focal Properties of Phase Zone Plates,” Br. J. Appl. Phys. 2, 1789 (1969).

1968

1966

1951

O. E. Myers, “Studies of Transmission Zone Plates,” Am. J. Phys. 19, 359 (1951).
[CrossRef]

Collins, L. F.

Gudat, W.

Hagemann, H.-J.

Jones, A. R.

A. R. Jones, “The Focal Properties of Phase Zone Plates,” Br. J. Appl. Phys. 2, 1789 (1969).

Kirz, J.

Kunz, C.

Myers, O. E.

O. E. Myers, “Studies of Transmission Zone Plates,” Am. J. Phys. 19, 359 (1951).
[CrossRef]

Niemann, B.

B. Niemann, D. Rudolph, G. Schmahl, “Soft-X Ray Imaging Zone Plates with Large Zone Numbers for Microscopic and Spectroscopic Applications,” Opt. Commun. 12, 160 (1974).
[CrossRef]

Rudolph, D.

B. Niemann, D. Rudolph, G. Schmahl, “Soft-X Ray Imaging Zone Plates with Large Zone Numbers for Microscopic and Spectroscopic Applications,” Opt. Commun. 12, 160 (1974).
[CrossRef]

Schmahl, G.

B. Niemann, D. Rudolph, G. Schmahl, “Soft-X Ray Imaging Zone Plates with Large Zone Numbers for Microscopic and Spectroscopic Applications,” Opt. Commun. 12, 160 (1974).
[CrossRef]

Waldman, G. S.

Am. J. Phys.

O. E. Myers, “Studies of Transmission Zone Plates,” Am. J. Phys. 19, 359 (1951).
[CrossRef]

Appl. Opt.

Br. J. Appl. Phys.

A. R. Jones, “The Focal Properties of Phase Zone Plates,” Br. J. Appl. Phys. 2, 1789 (1969).

J. Opt. Soc. Am.

Opt. Commun.

B. Niemann, D. Rudolph, G. Schmahl, “Soft-X Ray Imaging Zone Plates with Large Zone Numbers for Microscopic and Spectroscopic Applications,” Opt. Commun. 12, 160 (1974).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Zone plate structure and coordinate system definition.

Fig. 2
Fig. 2

Dependence of diffracted flux energy on wavelength for several values of thickness d. Energies are normalized to that of the first-order energy in a conventional FZP. An absorption edge exists at∼200Å.

Fig. 3
Fig. 3

Dependence of diffracted flux energy on thickness d for λ0 = 400 Å. Energy is normalized to that of the first-order energy in a conventional FZP.

Fig. 4
Fig. 4

Dependence of diffracted energy on film thickness t when λ0 = 400 Å and d0 = 0.17 μm. The solid lines are results calculated for an Al2O3 thickness of 0 Å the broken lines are for 20-Å Al2O3 thickness.

Tables (1)

Tables Icon

Table I Optimum Parameter Values of the Proposed Zone Plate; First- and Higher-Order Flux Energies are Compared with Those of Other Kinds of Zone Plate

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E ( X i , Y i ) = 1 j λ 0 Z f exp ( j 2 π Z f λ 0 ) T ( X 0 , Y 0 ) × exp { j π λ 0 Z f [ ( X i X 0 ) 2 + ( Y i Y 0 ) 2 ] } d X 0 d Y 0 ,

Metrics