Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid State Laser Engineering (Springer, New York, 1976).
  2. H. G. Danielmeyer, “Progress in Nd:YAG Lasers,” in Lasers: A Series of Advances, Vol. 4, A. K. Levine, A. J. DeMaria, Eds. (Marcel Dekker, New York, 1976), p. 1.
  3. W. Koechner, “Output Fluctuations of CW-Pumped Nd:YAG Lasers,” IEEE J. Quantum Electron. QE-8, 656 (1972).
    [CrossRef]
  4. L. M. Osterink, J. D. Foster, “Thermal Effects and Transverse Mode Control in a Nd:YAG Laser,” Appl. Phys. Lett. 12, 128 (1968).
    [CrossRef]
  5. J. Steffen, J.-P. Lortscher, G. Herziger, “Fundamental Mode Radiation with Solid-State Lasers,” IEEE J. Quantum Electron. QE-8, 239 (1972).
    [CrossRef]
  6. H. G. Danielmeyer, “Stabilized Efficient Single-Frequency NdrYAG Laser,” IEEE J. Quantum Electron. QE-6, 101 (1970);H. G. Danielmeyer, W. N. Leibolt, “Stable Tunable Single Frequency Nd:YAG Laser,” Appl. Phys. 3, 193 (1974).
    [CrossRef]
  7. H. Gerhardt, V. Bödecker, H. Welling, “Frequenzverhalten eines Frequenzstabilen YAG:Nd3+-Lasers,” Z. Angew. Phys. 31, 11 (1971).
  8. Y. L. Sun, R. L. Byer, “Submegahertz Frequency-Stabilized Nd:YAG Oscillator,” Opt. Lett. 7, 408 (1982).
    [CrossRef] [PubMed]
  9. B. K. Zhou, T. J. Kane, R. L. Byer, “Frequency Jitter and Linewidth of a Single-Mode Monolithic Nd:YAG Laser,” J. Opt. Soc. Am. B 1, 438 (1984).
  10. P. A. Andreev, A. A. Gusev, S. V. Kruzhalov, L. N. Pakhomov, Petrunkin V. Yu., “Stabilized Single-Frequency Traveling-Wave YAG:Nd3+ Laser,” Sov. Tech. Phys. Lett. 4, 137 (1978);P. A. Andreev, S. V. Kruzhalov, L. N. Pakhomov, Petrunkin V. Yu., “Frequency Stabilization of a YAG:Nd3+ Traveling-Wave Lasei Using an Intraresonator Selector,” Sov. Tech. Phys. Lett. 26, 134 (1981).
  11. A. R. Clobes, M. J. Brienza, “Single-Frequency Traveling-Wave Nd:YAG Laser,” Appl. Phys. Lett. 21, 265 (1972).
    [CrossRef]
  12. Control Laser Corp., model 514T.
  13. A. Yariv, Quantum Electronics (Wiley, New York, 1975), Chap. 7..
  14. J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, J. L. Hall, “Dye-Laser Frequency Stabilization Using Optical Resonators,” Appl. Phys. B 33, 179 (1984).
    [CrossRef]

1984

B. K. Zhou, T. J. Kane, R. L. Byer, “Frequency Jitter and Linewidth of a Single-Mode Monolithic Nd:YAG Laser,” J. Opt. Soc. Am. B 1, 438 (1984).

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, J. L. Hall, “Dye-Laser Frequency Stabilization Using Optical Resonators,” Appl. Phys. B 33, 179 (1984).
[CrossRef]

1982

1978

P. A. Andreev, A. A. Gusev, S. V. Kruzhalov, L. N. Pakhomov, Petrunkin V. Yu., “Stabilized Single-Frequency Traveling-Wave YAG:Nd3+ Laser,” Sov. Tech. Phys. Lett. 4, 137 (1978);P. A. Andreev, S. V. Kruzhalov, L. N. Pakhomov, Petrunkin V. Yu., “Frequency Stabilization of a YAG:Nd3+ Traveling-Wave Lasei Using an Intraresonator Selector,” Sov. Tech. Phys. Lett. 26, 134 (1981).

1972

A. R. Clobes, M. J. Brienza, “Single-Frequency Traveling-Wave Nd:YAG Laser,” Appl. Phys. Lett. 21, 265 (1972).
[CrossRef]

W. Koechner, “Output Fluctuations of CW-Pumped Nd:YAG Lasers,” IEEE J. Quantum Electron. QE-8, 656 (1972).
[CrossRef]

J. Steffen, J.-P. Lortscher, G. Herziger, “Fundamental Mode Radiation with Solid-State Lasers,” IEEE J. Quantum Electron. QE-8, 239 (1972).
[CrossRef]

1971

H. Gerhardt, V. Bödecker, H. Welling, “Frequenzverhalten eines Frequenzstabilen YAG:Nd3+-Lasers,” Z. Angew. Phys. 31, 11 (1971).

1970

H. G. Danielmeyer, “Stabilized Efficient Single-Frequency NdrYAG Laser,” IEEE J. Quantum Electron. QE-6, 101 (1970);H. G. Danielmeyer, W. N. Leibolt, “Stable Tunable Single Frequency Nd:YAG Laser,” Appl. Phys. 3, 193 (1974).
[CrossRef]

1968

L. M. Osterink, J. D. Foster, “Thermal Effects and Transverse Mode Control in a Nd:YAG Laser,” Appl. Phys. Lett. 12, 128 (1968).
[CrossRef]

Andreev, P. A.

P. A. Andreev, A. A. Gusev, S. V. Kruzhalov, L. N. Pakhomov, Petrunkin V. Yu., “Stabilized Single-Frequency Traveling-Wave YAG:Nd3+ Laser,” Sov. Tech. Phys. Lett. 4, 137 (1978);P. A. Andreev, S. V. Kruzhalov, L. N. Pakhomov, Petrunkin V. Yu., “Frequency Stabilization of a YAG:Nd3+ Traveling-Wave Lasei Using an Intraresonator Selector,” Sov. Tech. Phys. Lett. 26, 134 (1981).

Bödecker, V.

H. Gerhardt, V. Bödecker, H. Welling, “Frequenzverhalten eines Frequenzstabilen YAG:Nd3+-Lasers,” Z. Angew. Phys. 31, 11 (1971).

Brienza, M. J.

A. R. Clobes, M. J. Brienza, “Single-Frequency Traveling-Wave Nd:YAG Laser,” Appl. Phys. Lett. 21, 265 (1972).
[CrossRef]

Byer, R. L.

B. K. Zhou, T. J. Kane, R. L. Byer, “Frequency Jitter and Linewidth of a Single-Mode Monolithic Nd:YAG Laser,” J. Opt. Soc. Am. B 1, 438 (1984).

Y. L. Sun, R. L. Byer, “Submegahertz Frequency-Stabilized Nd:YAG Oscillator,” Opt. Lett. 7, 408 (1982).
[CrossRef] [PubMed]

Clobes, A. R.

A. R. Clobes, M. J. Brienza, “Single-Frequency Traveling-Wave Nd:YAG Laser,” Appl. Phys. Lett. 21, 265 (1972).
[CrossRef]

Danielmeyer, H. G.

H. G. Danielmeyer, “Stabilized Efficient Single-Frequency NdrYAG Laser,” IEEE J. Quantum Electron. QE-6, 101 (1970);H. G. Danielmeyer, W. N. Leibolt, “Stable Tunable Single Frequency Nd:YAG Laser,” Appl. Phys. 3, 193 (1974).
[CrossRef]

H. G. Danielmeyer, “Progress in Nd:YAG Lasers,” in Lasers: A Series of Advances, Vol. 4, A. K. Levine, A. J. DeMaria, Eds. (Marcel Dekker, New York, 1976), p. 1.

Foster, J. D.

L. M. Osterink, J. D. Foster, “Thermal Effects and Transverse Mode Control in a Nd:YAG Laser,” Appl. Phys. Lett. 12, 128 (1968).
[CrossRef]

Gerhardt, H.

H. Gerhardt, V. Bödecker, H. Welling, “Frequenzverhalten eines Frequenzstabilen YAG:Nd3+-Lasers,” Z. Angew. Phys. 31, 11 (1971).

Gusev, A. A.

P. A. Andreev, A. A. Gusev, S. V. Kruzhalov, L. N. Pakhomov, Petrunkin V. Yu., “Stabilized Single-Frequency Traveling-Wave YAG:Nd3+ Laser,” Sov. Tech. Phys. Lett. 4, 137 (1978);P. A. Andreev, S. V. Kruzhalov, L. N. Pakhomov, Petrunkin V. Yu., “Frequency Stabilization of a YAG:Nd3+ Traveling-Wave Lasei Using an Intraresonator Selector,” Sov. Tech. Phys. Lett. 26, 134 (1981).

Hall, J. L.

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, J. L. Hall, “Dye-Laser Frequency Stabilization Using Optical Resonators,” Appl. Phys. B 33, 179 (1984).
[CrossRef]

Herziger, G.

J. Steffen, J.-P. Lortscher, G. Herziger, “Fundamental Mode Radiation with Solid-State Lasers,” IEEE J. Quantum Electron. QE-8, 239 (1972).
[CrossRef]

Hils, D.

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, J. L. Hall, “Dye-Laser Frequency Stabilization Using Optical Resonators,” Appl. Phys. B 33, 179 (1984).
[CrossRef]

Hollberg, L.

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, J. L. Hall, “Dye-Laser Frequency Stabilization Using Optical Resonators,” Appl. Phys. B 33, 179 (1984).
[CrossRef]

Hough, J.

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, J. L. Hall, “Dye-Laser Frequency Stabilization Using Optical Resonators,” Appl. Phys. B 33, 179 (1984).
[CrossRef]

Kane, T. J.

B. K. Zhou, T. J. Kane, R. L. Byer, “Frequency Jitter and Linewidth of a Single-Mode Monolithic Nd:YAG Laser,” J. Opt. Soc. Am. B 1, 438 (1984).

Koechner, W.

W. Koechner, “Output Fluctuations of CW-Pumped Nd:YAG Lasers,” IEEE J. Quantum Electron. QE-8, 656 (1972).
[CrossRef]

W. Koechner, Solid State Laser Engineering (Springer, New York, 1976).

Kruzhalov, S. V.

P. A. Andreev, A. A. Gusev, S. V. Kruzhalov, L. N. Pakhomov, Petrunkin V. Yu., “Stabilized Single-Frequency Traveling-Wave YAG:Nd3+ Laser,” Sov. Tech. Phys. Lett. 4, 137 (1978);P. A. Andreev, S. V. Kruzhalov, L. N. Pakhomov, Petrunkin V. Yu., “Frequency Stabilization of a YAG:Nd3+ Traveling-Wave Lasei Using an Intraresonator Selector,” Sov. Tech. Phys. Lett. 26, 134 (1981).

Lortscher, J.-P.

J. Steffen, J.-P. Lortscher, G. Herziger, “Fundamental Mode Radiation with Solid-State Lasers,” IEEE J. Quantum Electron. QE-8, 239 (1972).
[CrossRef]

Ma, L.-S.

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, J. L. Hall, “Dye-Laser Frequency Stabilization Using Optical Resonators,” Appl. Phys. B 33, 179 (1984).
[CrossRef]

Osterink, L. M.

L. M. Osterink, J. D. Foster, “Thermal Effects and Transverse Mode Control in a Nd:YAG Laser,” Appl. Phys. Lett. 12, 128 (1968).
[CrossRef]

Pakhomov, L. N.

P. A. Andreev, A. A. Gusev, S. V. Kruzhalov, L. N. Pakhomov, Petrunkin V. Yu., “Stabilized Single-Frequency Traveling-Wave YAG:Nd3+ Laser,” Sov. Tech. Phys. Lett. 4, 137 (1978);P. A. Andreev, S. V. Kruzhalov, L. N. Pakhomov, Petrunkin V. Yu., “Frequency Stabilization of a YAG:Nd3+ Traveling-Wave Lasei Using an Intraresonator Selector,” Sov. Tech. Phys. Lett. 26, 134 (1981).

Rayman, M. D.

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, J. L. Hall, “Dye-Laser Frequency Stabilization Using Optical Resonators,” Appl. Phys. B 33, 179 (1984).
[CrossRef]

Steffen, J.

J. Steffen, J.-P. Lortscher, G. Herziger, “Fundamental Mode Radiation with Solid-State Lasers,” IEEE J. Quantum Electron. QE-8, 239 (1972).
[CrossRef]

Sun, Y. L.

V. Yu., Petrunkin

P. A. Andreev, A. A. Gusev, S. V. Kruzhalov, L. N. Pakhomov, Petrunkin V. Yu., “Stabilized Single-Frequency Traveling-Wave YAG:Nd3+ Laser,” Sov. Tech. Phys. Lett. 4, 137 (1978);P. A. Andreev, S. V. Kruzhalov, L. N. Pakhomov, Petrunkin V. Yu., “Frequency Stabilization of a YAG:Nd3+ Traveling-Wave Lasei Using an Intraresonator Selector,” Sov. Tech. Phys. Lett. 26, 134 (1981).

Welling, H.

H. Gerhardt, V. Bödecker, H. Welling, “Frequenzverhalten eines Frequenzstabilen YAG:Nd3+-Lasers,” Z. Angew. Phys. 31, 11 (1971).

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, New York, 1975), Chap. 7..

Zhou, B. K.

B. K. Zhou, T. J. Kane, R. L. Byer, “Frequency Jitter and Linewidth of a Single-Mode Monolithic Nd:YAG Laser,” J. Opt. Soc. Am. B 1, 438 (1984).

Appl. Phys. B

J. Hough, D. Hils, M. D. Rayman, L.-S. Ma, L. Hollberg, J. L. Hall, “Dye-Laser Frequency Stabilization Using Optical Resonators,” Appl. Phys. B 33, 179 (1984).
[CrossRef]

Appl. Phys. Lett.

A. R. Clobes, M. J. Brienza, “Single-Frequency Traveling-Wave Nd:YAG Laser,” Appl. Phys. Lett. 21, 265 (1972).
[CrossRef]

L. M. Osterink, J. D. Foster, “Thermal Effects and Transverse Mode Control in a Nd:YAG Laser,” Appl. Phys. Lett. 12, 128 (1968).
[CrossRef]

IEEE J. Quantum Electron.

J. Steffen, J.-P. Lortscher, G. Herziger, “Fundamental Mode Radiation with Solid-State Lasers,” IEEE J. Quantum Electron. QE-8, 239 (1972).
[CrossRef]

H. G. Danielmeyer, “Stabilized Efficient Single-Frequency NdrYAG Laser,” IEEE J. Quantum Electron. QE-6, 101 (1970);H. G. Danielmeyer, W. N. Leibolt, “Stable Tunable Single Frequency Nd:YAG Laser,” Appl. Phys. 3, 193 (1974).
[CrossRef]

W. Koechner, “Output Fluctuations of CW-Pumped Nd:YAG Lasers,” IEEE J. Quantum Electron. QE-8, 656 (1972).
[CrossRef]

J. Opt. Soc. Am. B

B. K. Zhou, T. J. Kane, R. L. Byer, “Frequency Jitter and Linewidth of a Single-Mode Monolithic Nd:YAG Laser,” J. Opt. Soc. Am. B 1, 438 (1984).

Opt. Lett.

Sov. Tech. Phys. Lett.

P. A. Andreev, A. A. Gusev, S. V. Kruzhalov, L. N. Pakhomov, Petrunkin V. Yu., “Stabilized Single-Frequency Traveling-Wave YAG:Nd3+ Laser,” Sov. Tech. Phys. Lett. 4, 137 (1978);P. A. Andreev, S. V. Kruzhalov, L. N. Pakhomov, Petrunkin V. Yu., “Frequency Stabilization of a YAG:Nd3+ Traveling-Wave Lasei Using an Intraresonator Selector,” Sov. Tech. Phys. Lett. 26, 134 (1981).

Z. Angew. Phys.

H. Gerhardt, V. Bödecker, H. Welling, “Frequenzverhalten eines Frequenzstabilen YAG:Nd3+-Lasers,” Z. Angew. Phys. 31, 11 (1971).

Other

W. Koechner, Solid State Laser Engineering (Springer, New York, 1976).

H. G. Danielmeyer, “Progress in Nd:YAG Lasers,” in Lasers: A Series of Advances, Vol. 4, A. K. Levine, A. J. DeMaria, Eds. (Marcel Dekker, New York, 1976), p. 1.

Control Laser Corp., model 514T.

A. Yariv, Quantum Electronics (Wiley, New York, 1975), Chap. 7..

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Optical arrangement for frequency stabilization of the Nd: YAG laser. The laser cavity is formed by mirrors M1-M4. Confocal interferometers C1-C3 are used for locking (C1) and monitoring (C2,C3) the laser frequency. Other elements are as discussed in the text.

Fig. 2
Fig. 2

Photograph of the transmission of the cavity C2 as a function of cavity length showing the frequency stability of the locked Nd:YAG laser. The instrument limited FWHM of the line is 240 kHz; the sweep rate is 1 msec/cm.

Fig. 3
Fig. 3

Photographs of the transmission of the cavity C3. The cavity length is fixed at a point corresponding to a detuning from resonance of half of the instrumental width. Frequency deviations are thus transformed to intensity fluctuations with the appropriate conversion shown in the photographs. Horizontal scales are (a) 20 msec/cm and (b) 2 msec/cm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( A B C D ) = [ 1 d f 4 L d ( L d ) f 4 1 f 1 f 4 ( 1 d f ) ( 1 d f ) ( 1 L d f 4 ) L d f ] .
d W d f = 0 ,
π W 2 λ = 2 B [ 4 ( A + D ) 2 ] 1 / 2 .
d W d f = W D D f = 0 ,
W d W d f = B 2 λ π f 2 A + D [ 4 ( A + D ) 2 ] 3 / 2 .
A + D = 0 .

Metrics