Abstract

The potential measurement accuracy of coherent anti-Stokes Raman scattering (CARS) in N2 was studied. A test was conducted using BOXCARS and nonresonant background suppression in a stabilized tube furnace from room temperature up to 1700 K. A computer program was developed for quick data processing. The influence of referencing on temperature measurement accuracy was analyzed. Absence of referencing produced errors up to 100 K on the mean temperature and on the standard deviation. Referencing with a time-averaged reference gave accurate values for the mean temperature. Referencing on a shot-to-shot basis improved the mean slightly and produced marginal gains in the standard deviation of individual measurements. The latter stays in the 10–50 K range in the temperature domain. Simulations show that part of the standard deviation (20%) is attributable to shot noise alone. The rest probably results from dye laser spectral noise and beam wandering.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription