Abstract

Echlette gratings made by chemical etching of silicon substrates have already proved to be efficient, easy to implement, and well adapted to optical wavelength demultiplexing [ Y. Fujii, K. I. Aoyama, and J. I. Minowa, “ Optical Demultiplexer Using a Silicon Echelette Grating,” IEEE J. Quantum Electron. QE-16, 165 ( 1980).]. This paper describes a collaboration between experimentalists and theoreticians devoted to the practical construction of wavelength demultiplexers for optical communications in the 0.78–0.9 and 1.2–1.35-μm ranges. A theoretical optimization of echelette gratings on silicon substrate allows us to obtain a very high diffraction efficiency. The experimental results confirmed the theoretical predictions.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Fujii, K. I. Aoyama, J. I. Minowa, “Optical Demultiplexer Using a Silicon Echelette Grating,” IEEE J. Quantum Electron. QE-16, 165 (1980).
    [CrossRef]
  2. D. J. Nagel, K. E. Bean, R. K. Watts, “Spectroscopic Applications of Structures Produced by Orientation-Dependent Etching,” Nucl. Instrum. Methods 172, 321 (1980).
    [CrossRef]
  3. D. Maystre, H. Neviere, R. Petit, “Experimental Verifications and Application of the Theory,” in Electromagnetic Theory of Gratings, R. Petit, Ed. (Springer, New York, 1981), p. 159.
  4. D. Maystre, “Rigorous Vector Theories of Diffraction Gratings,” Prog. Opt. 22, 000 (1984).
  5. R. W. Wood, “On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum,” Philos. Mag. 4, 396 (1902).
  6. D. Maystre, “General Study of Grating Anomalies from Electromagnetic Surface Modes,” in Electromagnetic Surface Modes, A. D. Boardman, Ed. (Wiley, New York, 1982), p. 661.

1984 (1)

D. Maystre, “Rigorous Vector Theories of Diffraction Gratings,” Prog. Opt. 22, 000 (1984).

1980 (2)

Y. Fujii, K. I. Aoyama, J. I. Minowa, “Optical Demultiplexer Using a Silicon Echelette Grating,” IEEE J. Quantum Electron. QE-16, 165 (1980).
[CrossRef]

D. J. Nagel, K. E. Bean, R. K. Watts, “Spectroscopic Applications of Structures Produced by Orientation-Dependent Etching,” Nucl. Instrum. Methods 172, 321 (1980).
[CrossRef]

1902 (1)

R. W. Wood, “On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum,” Philos. Mag. 4, 396 (1902).

Aoyama, K. I.

Y. Fujii, K. I. Aoyama, J. I. Minowa, “Optical Demultiplexer Using a Silicon Echelette Grating,” IEEE J. Quantum Electron. QE-16, 165 (1980).
[CrossRef]

Bean, K. E.

D. J. Nagel, K. E. Bean, R. K. Watts, “Spectroscopic Applications of Structures Produced by Orientation-Dependent Etching,” Nucl. Instrum. Methods 172, 321 (1980).
[CrossRef]

Fujii, Y.

Y. Fujii, K. I. Aoyama, J. I. Minowa, “Optical Demultiplexer Using a Silicon Echelette Grating,” IEEE J. Quantum Electron. QE-16, 165 (1980).
[CrossRef]

Maystre, D.

D. Maystre, “Rigorous Vector Theories of Diffraction Gratings,” Prog. Opt. 22, 000 (1984).

D. Maystre, “General Study of Grating Anomalies from Electromagnetic Surface Modes,” in Electromagnetic Surface Modes, A. D. Boardman, Ed. (Wiley, New York, 1982), p. 661.

D. Maystre, H. Neviere, R. Petit, “Experimental Verifications and Application of the Theory,” in Electromagnetic Theory of Gratings, R. Petit, Ed. (Springer, New York, 1981), p. 159.

Minowa, J. I.

Y. Fujii, K. I. Aoyama, J. I. Minowa, “Optical Demultiplexer Using a Silicon Echelette Grating,” IEEE J. Quantum Electron. QE-16, 165 (1980).
[CrossRef]

Nagel, D. J.

D. J. Nagel, K. E. Bean, R. K. Watts, “Spectroscopic Applications of Structures Produced by Orientation-Dependent Etching,” Nucl. Instrum. Methods 172, 321 (1980).
[CrossRef]

Neviere, H.

D. Maystre, H. Neviere, R. Petit, “Experimental Verifications and Application of the Theory,” in Electromagnetic Theory of Gratings, R. Petit, Ed. (Springer, New York, 1981), p. 159.

Petit, R.

D. Maystre, H. Neviere, R. Petit, “Experimental Verifications and Application of the Theory,” in Electromagnetic Theory of Gratings, R. Petit, Ed. (Springer, New York, 1981), p. 159.

Watts, R. K.

D. J. Nagel, K. E. Bean, R. K. Watts, “Spectroscopic Applications of Structures Produced by Orientation-Dependent Etching,” Nucl. Instrum. Methods 172, 321 (1980).
[CrossRef]

Wood, R. W.

R. W. Wood, “On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum,” Philos. Mag. 4, 396 (1902).

IEEE J. Quantum Electron. (1)

Y. Fujii, K. I. Aoyama, J. I. Minowa, “Optical Demultiplexer Using a Silicon Echelette Grating,” IEEE J. Quantum Electron. QE-16, 165 (1980).
[CrossRef]

Nucl. Instrum. Methods (1)

D. J. Nagel, K. E. Bean, R. K. Watts, “Spectroscopic Applications of Structures Produced by Orientation-Dependent Etching,” Nucl. Instrum. Methods 172, 321 (1980).
[CrossRef]

Philos. Mag. (1)

R. W. Wood, “On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum,” Philos. Mag. 4, 396 (1902).

Prog. Opt. (1)

D. Maystre, “Rigorous Vector Theories of Diffraction Gratings,” Prog. Opt. 22, 000 (1984).

Other (2)

D. Maystre, “General Study of Grating Anomalies from Electromagnetic Surface Modes,” in Electromagnetic Surface Modes, A. D. Boardman, Ed. (Wiley, New York, 1982), p. 661.

D. Maystre, H. Neviere, R. Petit, “Experimental Verifications and Application of the Theory,” in Electromagnetic Theory of Gratings, R. Petit, Ed. (Springer, New York, 1981), p. 159.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic diagram summarizing the different orientations of the silicon substrate. The surface of the wafer can be plane A or B; consequently the grating shows geometry A or B (see Fig. 2).

Fig. 2
Fig. 2

Geometries of the echelette gratings: profile A (apex angle: 109.47°); profile B (apex angle: 70.53°).

Fig. 3
Fig. 3

SEM photograph of the grating profile before removing the silica pattern.

Fig. 4
Fig. 4

SEM photograph of the grating profile after removing the silica pattern.

Fig. 5
Fig. 5

SEM photograph of the grating ready to use.

Fig. 6
Fig. 6

Schematic representation of the wavelength demultiplexer.

Fig. 7
Fig. 7

Theoretical efficiency of a gold grating of profile A with α = 12.13° and d = 2.04 μm: —, TM polarization; ---, TE polarization.

Fig. 8
Fig. 8

Theoretical efficiency of a gold grating of profile B with α = 12.13° and d = 2.04 μm.

Fig. 9
Fig. 9

Location of the Wood anomalies for a gold grating used in Littrow mounting.

Fig. 10
Fig. 10

Theoretical efficiency of the optimized gold grating with profile B: d = 2.3 μm and α = 10.85°.

Fig. 11
Fig. 11

Experimental efficiency of a grating similar to the grating of Fig. 7: profile A, d = 2 μm, α = 11.65°.

Fig. 12
Fig. 12

Experimental efficiency of a grating similar to the grating of Fig. 10 profile B: d = 2.3 μm; α = 10.7°. The efficiency in natural light is represented by a dotted line (average value of the TE and TM efficiencies).

Fig. 13
Fig. 13

Simulation of the output intensity of a four-channel wavelength demultiplexer.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

λ B = 2 d sin θ ,
θ = α .
f Δ λ Δ l = d cos α ,
f Δ λ Δ l = λ B 2 tan α ;
α n = 2 π sin θ / λ + 2 π n / d
α = 2 π Re ( ν / 1 + ν 2 ) / λ ( Re is the real part ) ,
d [ Re ( ν / 1 + ν 2 ) sin θ ] = n λ .
Re ( ν / 1 + ν 2 ) d = n λ + ( λ B ) / 2 .

Metrics