Abstract

An analysis of broadband dye laser spectral noise is presented. Particular reference is given to the effect of such noise on broadband single-pulse CARS spectra. A simple theory which accurately predicts both dye laser and CARS spectral noise is presented. Methods for reducing CARS spectral noise are identified and discussed. A laser geometry based on a corner cube resonator is examined which significantly reduces dye laser noise.

© 1985 Optical Society of America

Full Article  |  PDF Article

Corrections

D. A. Greenhalgh and S. T. Whittley, "Mode noise in broadband CARS spectroscopy: erratum," Appl. Opt. 26, 768-768 (1987)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-26-5-768

References

  • View by:
  • |
  • |
  • |

  1. R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics,” in Laser Applications, Vol. V, R. K. Erf, Ed. (Academic, New York, 1984).
  2. S. Druet, J-P. E. Taran, “Coherent Anti-Stokes Raman Spectroscopy,” in Chemical and Biochemical Applications of Lasers, C. B. Moore, Ed. (Academic, New York, 1979).
  3. W. B. Roh, P. W. Schreiber, J-P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174 (1976).
    [CrossRef]
  4. D. A. Greenhalgh, F. M. Porter, W. A. England, “The Application of Coherent Anti-Stokes Raman Scattering to Turbulent Combustion Thermometry,” Combust. Flame 49, 171 (1983).
    [CrossRef]
  5. A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt. 23, 1328 (1984).
    [CrossRef] [PubMed]
  6. L. P. Goss, D. D. Trump, B. G. MacDonald, G. L. Switzer, “10-Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
    [CrossRef]
  7. D. Klick, K. A. Marko, L. Rimai, “Broadband Single-Pulse CARS Spectra in a Fired Internal Combustion Engine,” Appl. Opt. 20, 1178 (1981).
    [CrossRef] [PubMed]
  8. G. C. Alessandretti, P. Violino, “Thermometry by CARS in an Automobile Engine,” J. Phys. D 16, 1583 (1983).
    [CrossRef]
  9. D. V. Murphy, R. K. Chang, “Single-Pulse Broadband Rotational Coherent Anti-Stokes Raman Scattering Thermometry of Cold N2 Gas,” Opt. Lett. 6, 233 (1981).
    [CrossRef] [PubMed]
  10. K. A. Marko, L. Rimai, “Space- and Time-Resolved Coherent Anti-Stokes Raman Spectroscopy for Combustion Diagnostics,” Opt. Lett. 4, 211 (1979).
    [CrossRef] [PubMed]
  11. M. Pealat, P. Bouchardy, M. Lefebvre, J-P. E. Taran, to be published (1984).
  12. V. R. Mironenko, V. I. Yudson, “Quantum Noise in Intracavity Laser Spectroscopy,” Opt. Commun. 34, 397 (1980).
    [CrossRef]
  13. V. R. Mironenko, V. I. Yudson, “Strong Dependence of Multimode Laser Generation Spectrum on Spatial Localization of Gain and Losses,” Opt. Commun. 41, 126 (1982).
    [CrossRef]
  14. V. B. Baev, G. Gaida, H. Schroder, P. E. Toschek, “Quantum Fluctuations at a Multi-Mode Laser Oscillator,” Opt. Commun. 38, 309 (1981).
    [CrossRef]
  15. W. Brunner, H. Paul, “Spectral Properties of Dye Lasers,” Opt. Quantum Electron. 12, 393 (1980).
    [CrossRef]
  16. W. Brunner, H. Paul, “Time Behavior at the Spectral Properties of Dye Lasers,” Opt. Quantum Electron. 14, 453 (1982).
    [CrossRef]
  17. S. J. Harris, “Power Dependence of Continuous-Wave Intracavity Spectroscopy,” Opt. Lett. 7, 497 (1982).
    [CrossRef] [PubMed]
  18. R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1973).
  19. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).
  20. S. M. Curry, R. Cubeddu, T. W. Hansch, “Intensity Stabilization of Dye Laser Radiation by Saturated Amplification,” Appl. Phys. 1, 153 (1973).
    [CrossRef]
  21. N. Fabricas, K. Nattermann, D. von der Linde, “Macroscopic Manifestation of Quantum Fluctuations in Transient Stimulated Raman Scattering,” Phys. Rev. Lett. 52, 113 (1984).
    [CrossRef]
  22. D. A. Greenhalgh, W. A. England, AERE Harwell, Report R10282.
  23. R. L. Phillips, L. C. Andrews, “Spot Size and Divergence for Laguerre Gaussian Beams of any Order,” Appl. Opt. 22, 643 (1983).
    [CrossRef] [PubMed]
  24. M. A. Yuratich, “Effects at Laser Line Width on Coherent Anti-Stokes Raman Spectroscopy,” Mol. Phys. 38, 625 (1979).
    [CrossRef]
  25. R. L. St Peters, “Augmented Coherent Anti-Stokes Raman Spectroscopy Linewidth Parameter from Laser-Mode Structure,” Opt. Lett. 4, 401 (1979).
    [CrossRef] [PubMed]
  26. W. B. Roh, P. W. Schreiber, “Pressure Dependence of Integrated CARS Power,” Appl. Opt. 17, 1418 (1978).
    [CrossRef] [PubMed]
  27. R. J. Hall, “CARS Spectra of Combustion Gases,” Combust. Flame 35, 47 (1979).
    [CrossRef]
  28. R. L. Farrow, P. L. Mattern, L. A. Rahn, “Comparison Between CARS and Corrected Thermocouple Temperature Measurements in a Diffusion Flame,” Appl. Opt. 21, 3119 (1982).
    [CrossRef] [PubMed]
  29. G. S. Agarwal, S. Singh, “Effect of Pump Fluctuations on Line Shapes in Coherent Anti-Stokes Raman Scattering,” Phys. Rev. A 25, 3195 (1982).
    [CrossRef]
  30. H. Kataoka, S. Maeda, C. Hirose, “Effects of Laser Line Width on Coherent Anti-Stokes Raman Spectroscopy Spectra Profile,” Appl. Spectrosc. 36, 565 (1982).
    [CrossRef]
  31. R. E. Teets, “Accurate Convolutions of Coherent Anti-Stokes Raman Spectra,” Opt. Lett. 9, 226 (1984).
    [CrossRef] [PubMed]
  32. L. A. Rahn, R. L. Farrow, R. P. Lucht, “Effects of Laser Field Statistics on Coherent Anti-Stokes Raman Spectroscopy Intensities,” Opt. Lett. 9, 223 (1984).
    [CrossRef] [PubMed]
  33. D. A. Greenhalgh, “Comments on the Use of BOXCARS for Gas-Phase CARS Spectroscopy,” J. Raman Spectrosc. 14, 150 (1983).
    [CrossRef]
  34. L. P. GossSystems Research Laboratories, Inc., R&D Status Report 6603-7 (1982).
  35. D. R. Williams, C. A. Baker, AERE Harwell; private communication.
  36. L. C. Davis, K. A. Marko, L. Rimai, “Angular Distribution of Coherent Raman Emission in Degenerate Four-Wave Mixing with Pumping by a Single Diffraction Coupled Laser Beam: Configurations for High Spatial Resolution,” Appl. Opt. 20, 1685 (1981).
    [CrossRef] [PubMed]
  37. A. C. Eckbreth, “BOXCARS: Crossed-Beam Phase-Matched CARS Generation in Gases,” Appl. Phys. Lett. 32, 421 (1978).
    [CrossRef]
  38. E. R. Peck, “Polarization Properties of Corner Reflectors and Cavities, J. Opt. Soc. of Am. 52, 253 (1962).
    [CrossRef]
  39. G. Zhou, A. J. Alfey, L. W. Casperson, “Modes of a Laser Resonator with a Retroreflecting Corner Cube Mirror,” Appl. Opt. 21, 1670 (1982).
    [CrossRef] [PubMed]
  40. I.-C. Kuo, T. Ko, “Laser Resonators of a Mirror and Corner Cube Reflector Analysis by the Imaging Method,” Appl. Opt. 23, 53 (1984).
    [CrossRef] [PubMed]

1984 (5)

1983 (5)

D. A. Greenhalgh, “Comments on the Use of BOXCARS for Gas-Phase CARS Spectroscopy,” J. Raman Spectrosc. 14, 150 (1983).
[CrossRef]

R. L. Phillips, L. C. Andrews, “Spot Size and Divergence for Laguerre Gaussian Beams of any Order,” Appl. Opt. 22, 643 (1983).
[CrossRef] [PubMed]

L. P. Goss, D. D. Trump, B. G. MacDonald, G. L. Switzer, “10-Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
[CrossRef]

D. A. Greenhalgh, F. M. Porter, W. A. England, “The Application of Coherent Anti-Stokes Raman Scattering to Turbulent Combustion Thermometry,” Combust. Flame 49, 171 (1983).
[CrossRef]

G. C. Alessandretti, P. Violino, “Thermometry by CARS in an Automobile Engine,” J. Phys. D 16, 1583 (1983).
[CrossRef]

1982 (7)

1981 (4)

1980 (2)

W. Brunner, H. Paul, “Spectral Properties of Dye Lasers,” Opt. Quantum Electron. 12, 393 (1980).
[CrossRef]

V. R. Mironenko, V. I. Yudson, “Quantum Noise in Intracavity Laser Spectroscopy,” Opt. Commun. 34, 397 (1980).
[CrossRef]

1979 (4)

1978 (2)

W. B. Roh, P. W. Schreiber, “Pressure Dependence of Integrated CARS Power,” Appl. Opt. 17, 1418 (1978).
[CrossRef] [PubMed]

A. C. Eckbreth, “BOXCARS: Crossed-Beam Phase-Matched CARS Generation in Gases,” Appl. Phys. Lett. 32, 421 (1978).
[CrossRef]

1976 (1)

W. B. Roh, P. W. Schreiber, J-P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174 (1976).
[CrossRef]

1973 (1)

S. M. Curry, R. Cubeddu, T. W. Hansch, “Intensity Stabilization of Dye Laser Radiation by Saturated Amplification,” Appl. Phys. 1, 153 (1973).
[CrossRef]

1962 (1)

E. R. Peck, “Polarization Properties of Corner Reflectors and Cavities, J. Opt. Soc. of Am. 52, 253 (1962).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal, S. Singh, “Effect of Pump Fluctuations on Line Shapes in Coherent Anti-Stokes Raman Scattering,” Phys. Rev. A 25, 3195 (1982).
[CrossRef]

Alessandretti, G. C.

G. C. Alessandretti, P. Violino, “Thermometry by CARS in an Automobile Engine,” J. Phys. D 16, 1583 (1983).
[CrossRef]

Alfey, A. J.

Andrews, L. C.

Baev, V. B.

V. B. Baev, G. Gaida, H. Schroder, P. E. Toschek, “Quantum Fluctuations at a Multi-Mode Laser Oscillator,” Opt. Commun. 38, 309 (1981).
[CrossRef]

Baker, C. A.

D. R. Williams, C. A. Baker, AERE Harwell; private communication.

Bouchardy, P.

M. Pealat, P. Bouchardy, M. Lefebvre, J-P. E. Taran, to be published (1984).

Brunner, W.

W. Brunner, H. Paul, “Time Behavior at the Spectral Properties of Dye Lasers,” Opt. Quantum Electron. 14, 453 (1982).
[CrossRef]

W. Brunner, H. Paul, “Spectral Properties of Dye Lasers,” Opt. Quantum Electron. 12, 393 (1980).
[CrossRef]

Casperson, L. W.

Chang, R. K.

Cubeddu, R.

S. M. Curry, R. Cubeddu, T. W. Hansch, “Intensity Stabilization of Dye Laser Radiation by Saturated Amplification,” Appl. Phys. 1, 153 (1973).
[CrossRef]

Curry, S. M.

S. M. Curry, R. Cubeddu, T. W. Hansch, “Intensity Stabilization of Dye Laser Radiation by Saturated Amplification,” Appl. Phys. 1, 153 (1973).
[CrossRef]

Davis, L. C.

Dobbs, G. M.

Druet, S.

S. Druet, J-P. E. Taran, “Coherent Anti-Stokes Raman Spectroscopy,” in Chemical and Biochemical Applications of Lasers, C. B. Moore, Ed. (Academic, New York, 1979).

Eckbreth, A. C.

A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt. 23, 1328 (1984).
[CrossRef] [PubMed]

A. C. Eckbreth, “BOXCARS: Crossed-Beam Phase-Matched CARS Generation in Gases,” Appl. Phys. Lett. 32, 421 (1978).
[CrossRef]

R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics,” in Laser Applications, Vol. V, R. K. Erf, Ed. (Academic, New York, 1984).

England, W. A.

D. A. Greenhalgh, F. M. Porter, W. A. England, “The Application of Coherent Anti-Stokes Raman Scattering to Turbulent Combustion Thermometry,” Combust. Flame 49, 171 (1983).
[CrossRef]

D. A. Greenhalgh, W. A. England, AERE Harwell, Report R10282.

Fabricas, N.

N. Fabricas, K. Nattermann, D. von der Linde, “Macroscopic Manifestation of Quantum Fluctuations in Transient Stimulated Raman Scattering,” Phys. Rev. Lett. 52, 113 (1984).
[CrossRef]

Farrow, R. L.

Gaida, G.

V. B. Baev, G. Gaida, H. Schroder, P. E. Toschek, “Quantum Fluctuations at a Multi-Mode Laser Oscillator,” Opt. Commun. 38, 309 (1981).
[CrossRef]

Goss, L. P.

L. P. Goss, D. D. Trump, B. G. MacDonald, G. L. Switzer, “10-Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
[CrossRef]

L. P. GossSystems Research Laboratories, Inc., R&D Status Report 6603-7 (1982).

Greenhalgh, D. A.

D. A. Greenhalgh, “Comments on the Use of BOXCARS for Gas-Phase CARS Spectroscopy,” J. Raman Spectrosc. 14, 150 (1983).
[CrossRef]

D. A. Greenhalgh, F. M. Porter, W. A. England, “The Application of Coherent Anti-Stokes Raman Scattering to Turbulent Combustion Thermometry,” Combust. Flame 49, 171 (1983).
[CrossRef]

D. A. Greenhalgh, W. A. England, AERE Harwell, Report R10282.

Hall, R. J.

R. J. Hall, “CARS Spectra of Combustion Gases,” Combust. Flame 35, 47 (1979).
[CrossRef]

R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics,” in Laser Applications, Vol. V, R. K. Erf, Ed. (Academic, New York, 1984).

Hansch, T. W.

S. M. Curry, R. Cubeddu, T. W. Hansch, “Intensity Stabilization of Dye Laser Radiation by Saturated Amplification,” Appl. Phys. 1, 153 (1973).
[CrossRef]

Harris, S. J.

Hirose, C.

Kataoka, H.

Klick, D.

Ko, T.

Kuo, I.-C.

Lefebvre, M.

M. Pealat, P. Bouchardy, M. Lefebvre, J-P. E. Taran, to be published (1984).

Loudon, R.

R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1973).

Lucht, R. P.

MacDonald, B. G.

L. P. Goss, D. D. Trump, B. G. MacDonald, G. L. Switzer, “10-Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
[CrossRef]

Maeda, S.

Marko, K. A.

Mattern, P. L.

Mironenko, V. R.

V. R. Mironenko, V. I. Yudson, “Strong Dependence of Multimode Laser Generation Spectrum on Spatial Localization of Gain and Losses,” Opt. Commun. 41, 126 (1982).
[CrossRef]

V. R. Mironenko, V. I. Yudson, “Quantum Noise in Intracavity Laser Spectroscopy,” Opt. Commun. 34, 397 (1980).
[CrossRef]

Murphy, D. V.

Nattermann, K.

N. Fabricas, K. Nattermann, D. von der Linde, “Macroscopic Manifestation of Quantum Fluctuations in Transient Stimulated Raman Scattering,” Phys. Rev. Lett. 52, 113 (1984).
[CrossRef]

Paul, H.

W. Brunner, H. Paul, “Time Behavior at the Spectral Properties of Dye Lasers,” Opt. Quantum Electron. 14, 453 (1982).
[CrossRef]

W. Brunner, H. Paul, “Spectral Properties of Dye Lasers,” Opt. Quantum Electron. 12, 393 (1980).
[CrossRef]

Pealat, M.

M. Pealat, P. Bouchardy, M. Lefebvre, J-P. E. Taran, to be published (1984).

Peck, E. R.

E. R. Peck, “Polarization Properties of Corner Reflectors and Cavities, J. Opt. Soc. of Am. 52, 253 (1962).
[CrossRef]

Phillips, R. L.

Porter, F. M.

D. A. Greenhalgh, F. M. Porter, W. A. England, “The Application of Coherent Anti-Stokes Raman Scattering to Turbulent Combustion Thermometry,” Combust. Flame 49, 171 (1983).
[CrossRef]

Rahn, L. A.

Rimai, L.

Roh, W. B.

W. B. Roh, P. W. Schreiber, “Pressure Dependence of Integrated CARS Power,” Appl. Opt. 17, 1418 (1978).
[CrossRef] [PubMed]

W. B. Roh, P. W. Schreiber, J-P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174 (1976).
[CrossRef]

Schreiber, P. W.

W. B. Roh, P. W. Schreiber, “Pressure Dependence of Integrated CARS Power,” Appl. Opt. 17, 1418 (1978).
[CrossRef] [PubMed]

W. B. Roh, P. W. Schreiber, J-P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174 (1976).
[CrossRef]

Schroder, H.

V. B. Baev, G. Gaida, H. Schroder, P. E. Toschek, “Quantum Fluctuations at a Multi-Mode Laser Oscillator,” Opt. Commun. 38, 309 (1981).
[CrossRef]

Singh, S.

G. S. Agarwal, S. Singh, “Effect of Pump Fluctuations on Line Shapes in Coherent Anti-Stokes Raman Scattering,” Phys. Rev. A 25, 3195 (1982).
[CrossRef]

St Peters, R. L.

Stufflebeam, J. H.

Switzer, G. L.

L. P. Goss, D. D. Trump, B. G. MacDonald, G. L. Switzer, “10-Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
[CrossRef]

Taran, J-P. E.

W. B. Roh, P. W. Schreiber, J-P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174 (1976).
[CrossRef]

S. Druet, J-P. E. Taran, “Coherent Anti-Stokes Raman Spectroscopy,” in Chemical and Biochemical Applications of Lasers, C. B. Moore, Ed. (Academic, New York, 1979).

M. Pealat, P. Bouchardy, M. Lefebvre, J-P. E. Taran, to be published (1984).

Teets, R. E.

Tellex, P. A.

Toschek, P. E.

V. B. Baev, G. Gaida, H. Schroder, P. E. Toschek, “Quantum Fluctuations at a Multi-Mode Laser Oscillator,” Opt. Commun. 38, 309 (1981).
[CrossRef]

Trump, D. D.

L. P. Goss, D. D. Trump, B. G. MacDonald, G. L. Switzer, “10-Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
[CrossRef]

van Kampen, N. G.

N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).

Violino, P.

G. C. Alessandretti, P. Violino, “Thermometry by CARS in an Automobile Engine,” J. Phys. D 16, 1583 (1983).
[CrossRef]

von der Linde, D.

N. Fabricas, K. Nattermann, D. von der Linde, “Macroscopic Manifestation of Quantum Fluctuations in Transient Stimulated Raman Scattering,” Phys. Rev. Lett. 52, 113 (1984).
[CrossRef]

Williams, D. R.

D. R. Williams, C. A. Baker, AERE Harwell; private communication.

Yudson, V. I.

V. R. Mironenko, V. I. Yudson, “Strong Dependence of Multimode Laser Generation Spectrum on Spatial Localization of Gain and Losses,” Opt. Commun. 41, 126 (1982).
[CrossRef]

V. R. Mironenko, V. I. Yudson, “Quantum Noise in Intracavity Laser Spectroscopy,” Opt. Commun. 34, 397 (1980).
[CrossRef]

Yuratich, M. A.

M. A. Yuratich, “Effects at Laser Line Width on Coherent Anti-Stokes Raman Spectroscopy,” Mol. Phys. 38, 625 (1979).
[CrossRef]

Zhou, G.

Appl. Opt. (8)

Appl. Phys. (1)

S. M. Curry, R. Cubeddu, T. W. Hansch, “Intensity Stabilization of Dye Laser Radiation by Saturated Amplification,” Appl. Phys. 1, 153 (1973).
[CrossRef]

Appl. Phys. Lett. (2)

W. B. Roh, P. W. Schreiber, J-P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174 (1976).
[CrossRef]

A. C. Eckbreth, “BOXCARS: Crossed-Beam Phase-Matched CARS Generation in Gases,” Appl. Phys. Lett. 32, 421 (1978).
[CrossRef]

Appl. Spectrosc. (1)

Combust. Flame (2)

D. A. Greenhalgh, F. M. Porter, W. A. England, “The Application of Coherent Anti-Stokes Raman Scattering to Turbulent Combustion Thermometry,” Combust. Flame 49, 171 (1983).
[CrossRef]

R. J. Hall, “CARS Spectra of Combustion Gases,” Combust. Flame 35, 47 (1979).
[CrossRef]

J. Opt. Soc. of Am. (1)

E. R. Peck, “Polarization Properties of Corner Reflectors and Cavities, J. Opt. Soc. of Am. 52, 253 (1962).
[CrossRef]

J. Phys. D (1)

G. C. Alessandretti, P. Violino, “Thermometry by CARS in an Automobile Engine,” J. Phys. D 16, 1583 (1983).
[CrossRef]

J. Raman Spectrosc. (1)

D. A. Greenhalgh, “Comments on the Use of BOXCARS for Gas-Phase CARS Spectroscopy,” J. Raman Spectrosc. 14, 150 (1983).
[CrossRef]

Mol. Phys. (1)

M. A. Yuratich, “Effects at Laser Line Width on Coherent Anti-Stokes Raman Spectroscopy,” Mol. Phys. 38, 625 (1979).
[CrossRef]

Opt. Commun. (3)

V. R. Mironenko, V. I. Yudson, “Quantum Noise in Intracavity Laser Spectroscopy,” Opt. Commun. 34, 397 (1980).
[CrossRef]

V. R. Mironenko, V. I. Yudson, “Strong Dependence of Multimode Laser Generation Spectrum on Spatial Localization of Gain and Losses,” Opt. Commun. 41, 126 (1982).
[CrossRef]

V. B. Baev, G. Gaida, H. Schroder, P. E. Toschek, “Quantum Fluctuations at a Multi-Mode Laser Oscillator,” Opt. Commun. 38, 309 (1981).
[CrossRef]

Opt. Lett. (6)

Opt. Quantum Electron. (2)

W. Brunner, H. Paul, “Spectral Properties of Dye Lasers,” Opt. Quantum Electron. 12, 393 (1980).
[CrossRef]

W. Brunner, H. Paul, “Time Behavior at the Spectral Properties of Dye Lasers,” Opt. Quantum Electron. 14, 453 (1982).
[CrossRef]

Phys. Rev. A (1)

G. S. Agarwal, S. Singh, “Effect of Pump Fluctuations on Line Shapes in Coherent Anti-Stokes Raman Scattering,” Phys. Rev. A 25, 3195 (1982).
[CrossRef]

Phys. Rev. Lett. (1)

N. Fabricas, K. Nattermann, D. von der Linde, “Macroscopic Manifestation of Quantum Fluctuations in Transient Stimulated Raman Scattering,” Phys. Rev. Lett. 52, 113 (1984).
[CrossRef]

Rev. Sci. Instrum. (1)

L. P. Goss, D. D. Trump, B. G. MacDonald, G. L. Switzer, “10-Hz Coherent Anti-Stokes Raman Spectroscopy Apparatus for Turbulent Combustion Studies,” Rev. Sci. Instrum. 54, 563 (1983).
[CrossRef]

Other (8)

R. J. Hall, A. C. Eckbreth, “Coherent Anti-Stokes Raman Spectroscopy (CARS): Application to Combustion Diagnostics,” in Laser Applications, Vol. V, R. K. Erf, Ed. (Academic, New York, 1984).

S. Druet, J-P. E. Taran, “Coherent Anti-Stokes Raman Spectroscopy,” in Chemical and Biochemical Applications of Lasers, C. B. Moore, Ed. (Academic, New York, 1979).

R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1973).

N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981).

D. A. Greenhalgh, W. A. England, AERE Harwell, Report R10282.

M. Pealat, P. Bouchardy, M. Lefebvre, J-P. E. Taran, to be published (1984).

L. P. GossSystems Research Laboratories, Inc., R&D Status Report 6603-7 (1982).

D. R. Williams, C. A. Baker, AERE Harwell; private communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Single-pulse CARS spectrum of χNR, (b) 100-pulse average CARS spectrum of χNR, (c) single-pulse noise spectrum equal to the spectrum divided by spectrum (b).

Fig. 2
Fig. 2

Plot of Stokes or dye laser noise vs dye laser cavity length. Continuous line and squares are theoretical curve and experimental points for a plane–plane cavity. Dashed line and dots are the same for a stable cavity (see text). Open symbols are ASE experimental measurements.

Fig. 3
Fig. 3

Plot of anti-Stokes or CARS noise vs dye laser cavity length. Straight line theory and squares and dots are plane–plane and stable cavities, respectively.

Fig. 4
Fig. 4

Intensity probability plot for CARS noise. Dots are experimental measurements, dashed curve is a theoretical Gaussian distribution, and the continuous line is based on Eq. (7).

Tables (1)

Tables Icon

Table I Spectral Noise for Corner Cube Resonator with L = 30-cm Cavity

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

ω a s = 2 ω 1 ω ˙ s ,
P ( I ) = μ 1 exp ( I / μ ) μ = I ,
σ [ I 2 μ 2 ] 1 / 2 = μ .
I = k I k ,
σ 2 = k σ k 2 .
σ I = [ k I k 2 ] 1 / 2 / k I k .
P k ( I ) = I k 1 exp ( I / μ ) / μ k ( k 1 ) ! . k = j n .
S ( x x 0 ) = dxG ( x x 0 ) F ( x ) ,
S = G × F ,
F = 2 n L d ω d x c 1 I ,
% N 00 = ( 2 L ) 1 / 2 [ π / ( 2 Γ L 3 ) + Γ G ( 2 π 1 / 2 ) Γ G + Γ L 1 ] 1 / 2 × 100 % ,
( 2 p + l + 1 ) 1 / 2 = D p l ,
D p l = r l , p / r 00 ,
I ( p , l ) = K exp [ 2 ( 2 p + l ) 2 / ( D 2 1 ) 2 ] .
I as ( ω as ) = k d Δ 1 d Δ s | χ ( 3 ) ( ω 1 ω s ) | 2 G 1 ( Δ 1 ) G s ( Δ s ) I 1 2 I s ,
I as ( ω as ) = K d Δ j d Δ k d Δ s | ½ χ ( 3 ) ( ω 1 ω s + Δ j ) + ½ χ ( 3 ) ( ω 1 ω s + Δ k ) | 2 G 1 ( Δ j ) G 1 ( Δ k ) G s ( Δ s ) × I 1 I 1 I s δ ( 2 ω 1 ω s ω as + Δ j + Δ k ) ,
I a s ( p , l ) = K ( 2 p + l + 1 ) 1 exp [ 2 ( 2 p + l ) 2 ] / ( D c 2 1 ) 2 ,
I ( p , l ) = K exp [ 2 ( 2 p + l + 3 ) 2 ] / ( D 2 1 ) 2 ; l = 0 , 3 , 6 , etc .

Metrics