Abstract

The temperature dependence of the high frequency far wings of the self-broadened CO2 lines has been investigated in the 2400–2600-cm−1 spectral region. The temperature dependence of the corrective shape factor χ(σ,T) is demonstrated for the first time.

© 1985 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. P. Rinsland, M. A. H. Smith, J. M. Russel, J. H. Park, C. B. Farmer, “Stratospheric Measurements of Continuous Absorption Near 2400 cm−1,” Appl. Opt. 20, 4167 (1981).
    [CrossRef] [PubMed]
  2. B. H. Winters, S. Silverman, W. S. Benedict, “Line shape in the wing beyond the band head of the 4.3 μm band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 527 (1964).
    [CrossRef]
  3. D. E. Burch, D. A. Gryvnak, R. R. Patty, C. E. Bartky, “Shapes of Collision-Broadened CO2 Lines,” J. Opt. Soc. Am. 59, 267 (1969).
    [CrossRef]
  4. R. Le Doucen, V. Menoux, M. Larvor, C. Haeusler, “Realisation d'un spectrometre infra-rouge de resolution moyenne, corrige de la coma,” Appl. Opt. 19, 3110 (1980).
    [CrossRef]
  5. R. Le Doucen, C. Cousin, V. Menoux, “Carbon furnace infrared source,” J. Phys. E 17, 1107 (1984).
    [CrossRef]
  6. R. Le Doucen, J. P. Houdeau, C. Cousin, V. Menoux, “Variable path-length, low temperature cells for absorption spectroscopy,” J. Phys. E18, in press (1985).
  7. A. Valentin, Thesis, Paris (1977).
  8. N. Husson, A. Chedin, N. A. Scott, I. Cohen-Hallaleh, A. Berroir, “La banque de données Geisa,” Internal Reports 108 (1980) and 116 (1982), L.M.D., Ecole Polytechnique, Palaiseau, France.
  9. B. Fridovich, W. C. Braun, G. R. Smith, E. E. Champion, “Strengths of single lines in the 12C16O2ν3 band at 4.3 μm,” J. Mol. Spectrosc. 81, 248 (1980).
    [CrossRef]
  10. V. Malathy Devi, B. Fridovich, G. D. Jones, D. S. G. Snyder, “Diode laser measurements of strengths, half-widths and temperature dependence of half-widths for CO2 spectral lines near 4.2 μm,” J. Mol. Spectrosc. 105, 61 (1984).
    [CrossRef]
  11. V. Dana, 3rd cycle Thesis, Paris (1971).
  12. L. S. Bernstein, D. C. Robertson, J. A. Conant, B. P. Sandford, “Measured and Predicted Atmospheric Transmission in the 4.0–5.3-μm Region, and the Contribution of Continuum Absorption by CO2 and N2,” Appl. Opt. 18, 2454 (1979).
    [CrossRef] [PubMed]
  13. A. Henry, M. Margottin-Maclou, A. Valentin, L. Henry, “Contribution à l'étude de l'absorption du CO2 et de N2O dans la region de 5μ,” Final Report, Contract CNRS-ATP Physique de l'Atmosphere (Aug.1983).
  14. E. Arie, N. Lacome, C. Rossetti, “Etude expérimental et théorique des intensités et largeurs des raies de la transition 00°1 → (10°0, 02°0)I de CO2,” Can. J. Phys. 50, 1800 (1972).
    [CrossRef]
  15. R. S. Eng, A. W. Mantz, “Tunable diode laser spectroscopy of CO2 in the 10 to 15 μm spectral region lineshape and Q branch head absorption profile,” J. Mol. Spectrosc. 74, 331 (1979).
    [CrossRef]
  16. M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the parameters of the vibrational rotational lines in the 9.4 and 10.4 μm bands of CO2 at different temperatures,” Opt. Spectrosc. 48, 408 (1980).
  17. G. Birnbaum, “Microwave pressure broadening and its application to intermolecular forces,” Adv. Chem. Phys. 12, 487 (1967).
    [CrossRef]
  18. N. Lacome, A. Levy, G. I. Guelachvili, “Fourier Transform Measurement of Self-, N2-, and O2-Broadening of N2O Lines: Temperature Dependence of Linewidths,” Appl. Opt. 23, 425 (1984).
    [CrossRef] [PubMed]
  19. D. Robert, J. Bonamy, “Short range force effects in semi classical molecular line broadening calculations,” J. Phys. 40, 923 (1979).
    [CrossRef]
  20. L. D. Tubbs, D. Williams, “Broadening of IR Absorption Lines,” J. Opt. Soc. Am. 62, 284 (1972).
    [CrossRef]
  21. G. Birnbaum, “The shape of collision broadened lines from resonance to the far wings,” J. Quant. Spectrosc. Radiat. Transfer 21, 597 (1979).
    [CrossRef]
  22. G. Birnbaum, “The Shape of Pressure Broadened Molecular Spectra in the Far Wings,” invited lecture, Seventh International Conference on Spectral Lineshapes, Aussois, FranceF. Rostas, Ed. (Meudon, 1985), to be published.
  23. R. L. Armstrong, “Moment analysis of a model correlation function,” J. Quant. Spectrosc. Radiat. Transfer 28, 197 (1982).
    [CrossRef]
  24. M. W. P. Cann, R. W. Nicholls, P. L. Roney, F. D. Findlay, A. Blanchard, “Spectral line profiles in the 4.3 μm band of CO2,” in Digest of Topical Meeting on Spectroscopy in Support of Atmospheric Measurements (Optical Society of America, Washington, D.C., 1980), paper WP16-1.

1984

R. Le Doucen, C. Cousin, V. Menoux, “Carbon furnace infrared source,” J. Phys. E 17, 1107 (1984).
[CrossRef]

V. Malathy Devi, B. Fridovich, G. D. Jones, D. S. G. Snyder, “Diode laser measurements of strengths, half-widths and temperature dependence of half-widths for CO2 spectral lines near 4.2 μm,” J. Mol. Spectrosc. 105, 61 (1984).
[CrossRef]

N. Lacome, A. Levy, G. I. Guelachvili, “Fourier Transform Measurement of Self-, N2-, and O2-Broadening of N2O Lines: Temperature Dependence of Linewidths,” Appl. Opt. 23, 425 (1984).
[CrossRef] [PubMed]

1982

R. L. Armstrong, “Moment analysis of a model correlation function,” J. Quant. Spectrosc. Radiat. Transfer 28, 197 (1982).
[CrossRef]

1981

1980

R. Le Doucen, V. Menoux, M. Larvor, C. Haeusler, “Realisation d'un spectrometre infra-rouge de resolution moyenne, corrige de la coma,” Appl. Opt. 19, 3110 (1980).
[CrossRef]

B. Fridovich, W. C. Braun, G. R. Smith, E. E. Champion, “Strengths of single lines in the 12C16O2ν3 band at 4.3 μm,” J. Mol. Spectrosc. 81, 248 (1980).
[CrossRef]

M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the parameters of the vibrational rotational lines in the 9.4 and 10.4 μm bands of CO2 at different temperatures,” Opt. Spectrosc. 48, 408 (1980).

1979

R. S. Eng, A. W. Mantz, “Tunable diode laser spectroscopy of CO2 in the 10 to 15 μm spectral region lineshape and Q branch head absorption profile,” J. Mol. Spectrosc. 74, 331 (1979).
[CrossRef]

L. S. Bernstein, D. C. Robertson, J. A. Conant, B. P. Sandford, “Measured and Predicted Atmospheric Transmission in the 4.0–5.3-μm Region, and the Contribution of Continuum Absorption by CO2 and N2,” Appl. Opt. 18, 2454 (1979).
[CrossRef] [PubMed]

D. Robert, J. Bonamy, “Short range force effects in semi classical molecular line broadening calculations,” J. Phys. 40, 923 (1979).
[CrossRef]

G. Birnbaum, “The shape of collision broadened lines from resonance to the far wings,” J. Quant. Spectrosc. Radiat. Transfer 21, 597 (1979).
[CrossRef]

1972

E. Arie, N. Lacome, C. Rossetti, “Etude expérimental et théorique des intensités et largeurs des raies de la transition 00°1 → (10°0, 02°0)I de CO2,” Can. J. Phys. 50, 1800 (1972).
[CrossRef]

L. D. Tubbs, D. Williams, “Broadening of IR Absorption Lines,” J. Opt. Soc. Am. 62, 284 (1972).
[CrossRef]

1969

1967

G. Birnbaum, “Microwave pressure broadening and its application to intermolecular forces,” Adv. Chem. Phys. 12, 487 (1967).
[CrossRef]

1964

B. H. Winters, S. Silverman, W. S. Benedict, “Line shape in the wing beyond the band head of the 4.3 μm band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 527 (1964).
[CrossRef]

Arie, E.

E. Arie, N. Lacome, C. Rossetti, “Etude expérimental et théorique des intensités et largeurs des raies de la transition 00°1 → (10°0, 02°0)I de CO2,” Can. J. Phys. 50, 1800 (1972).
[CrossRef]

Armstrong, R. L.

R. L. Armstrong, “Moment analysis of a model correlation function,” J. Quant. Spectrosc. Radiat. Transfer 28, 197 (1982).
[CrossRef]

Bartky, C. E.

Benedict, W. S.

B. H. Winters, S. Silverman, W. S. Benedict, “Line shape in the wing beyond the band head of the 4.3 μm band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 527 (1964).
[CrossRef]

Bernstein, L. S.

Berroir, A.

N. Husson, A. Chedin, N. A. Scott, I. Cohen-Hallaleh, A. Berroir, “La banque de données Geisa,” Internal Reports 108 (1980) and 116 (1982), L.M.D., Ecole Polytechnique, Palaiseau, France.

Birnbaum, G.

G. Birnbaum, “The shape of collision broadened lines from resonance to the far wings,” J. Quant. Spectrosc. Radiat. Transfer 21, 597 (1979).
[CrossRef]

G. Birnbaum, “Microwave pressure broadening and its application to intermolecular forces,” Adv. Chem. Phys. 12, 487 (1967).
[CrossRef]

G. Birnbaum, “The Shape of Pressure Broadened Molecular Spectra in the Far Wings,” invited lecture, Seventh International Conference on Spectral Lineshapes, Aussois, FranceF. Rostas, Ed. (Meudon, 1985), to be published.

Blanchard, A.

M. W. P. Cann, R. W. Nicholls, P. L. Roney, F. D. Findlay, A. Blanchard, “Spectral line profiles in the 4.3 μm band of CO2,” in Digest of Topical Meeting on Spectroscopy in Support of Atmospheric Measurements (Optical Society of America, Washington, D.C., 1980), paper WP16-1.

Bonamy, J.

D. Robert, J. Bonamy, “Short range force effects in semi classical molecular line broadening calculations,” J. Phys. 40, 923 (1979).
[CrossRef]

Braun, W. C.

B. Fridovich, W. C. Braun, G. R. Smith, E. E. Champion, “Strengths of single lines in the 12C16O2ν3 band at 4.3 μm,” J. Mol. Spectrosc. 81, 248 (1980).
[CrossRef]

Bulanin, M. O.

M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the parameters of the vibrational rotational lines in the 9.4 and 10.4 μm bands of CO2 at different temperatures,” Opt. Spectrosc. 48, 408 (1980).

Bulychev, V. P.

M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the parameters of the vibrational rotational lines in the 9.4 and 10.4 μm bands of CO2 at different temperatures,” Opt. Spectrosc. 48, 408 (1980).

Burch, D. E.

Cann, M. W. P.

M. W. P. Cann, R. W. Nicholls, P. L. Roney, F. D. Findlay, A. Blanchard, “Spectral line profiles in the 4.3 μm band of CO2,” in Digest of Topical Meeting on Spectroscopy in Support of Atmospheric Measurements (Optical Society of America, Washington, D.C., 1980), paper WP16-1.

Champion, E. E.

B. Fridovich, W. C. Braun, G. R. Smith, E. E. Champion, “Strengths of single lines in the 12C16O2ν3 band at 4.3 μm,” J. Mol. Spectrosc. 81, 248 (1980).
[CrossRef]

Chedin, A.

N. Husson, A. Chedin, N. A. Scott, I. Cohen-Hallaleh, A. Berroir, “La banque de données Geisa,” Internal Reports 108 (1980) and 116 (1982), L.M.D., Ecole Polytechnique, Palaiseau, France.

Cohen-Hallaleh, I.

N. Husson, A. Chedin, N. A. Scott, I. Cohen-Hallaleh, A. Berroir, “La banque de données Geisa,” Internal Reports 108 (1980) and 116 (1982), L.M.D., Ecole Polytechnique, Palaiseau, France.

Conant, J. A.

Cousin, C.

R. Le Doucen, C. Cousin, V. Menoux, “Carbon furnace infrared source,” J. Phys. E 17, 1107 (1984).
[CrossRef]

R. Le Doucen, J. P. Houdeau, C. Cousin, V. Menoux, “Variable path-length, low temperature cells for absorption spectroscopy,” J. Phys. E18, in press (1985).

Dana, V.

V. Dana, 3rd cycle Thesis, Paris (1971).

Eng, R. S.

R. S. Eng, A. W. Mantz, “Tunable diode laser spectroscopy of CO2 in the 10 to 15 μm spectral region lineshape and Q branch head absorption profile,” J. Mol. Spectrosc. 74, 331 (1979).
[CrossRef]

Farmer, C. B.

Findlay, F. D.

M. W. P. Cann, R. W. Nicholls, P. L. Roney, F. D. Findlay, A. Blanchard, “Spectral line profiles in the 4.3 μm band of CO2,” in Digest of Topical Meeting on Spectroscopy in Support of Atmospheric Measurements (Optical Society of America, Washington, D.C., 1980), paper WP16-1.

Fridovich, B.

V. Malathy Devi, B. Fridovich, G. D. Jones, D. S. G. Snyder, “Diode laser measurements of strengths, half-widths and temperature dependence of half-widths for CO2 spectral lines near 4.2 μm,” J. Mol. Spectrosc. 105, 61 (1984).
[CrossRef]

B. Fridovich, W. C. Braun, G. R. Smith, E. E. Champion, “Strengths of single lines in the 12C16O2ν3 band at 4.3 μm,” J. Mol. Spectrosc. 81, 248 (1980).
[CrossRef]

Gryvnak, D. A.

Guelachvili, G. I.

Haeusler, C.

Henry, A.

A. Henry, M. Margottin-Maclou, A. Valentin, L. Henry, “Contribution à l'étude de l'absorption du CO2 et de N2O dans la region de 5μ,” Final Report, Contract CNRS-ATP Physique de l'Atmosphere (Aug.1983).

Henry, L.

A. Henry, M. Margottin-Maclou, A. Valentin, L. Henry, “Contribution à l'étude de l'absorption du CO2 et de N2O dans la region de 5μ,” Final Report, Contract CNRS-ATP Physique de l'Atmosphere (Aug.1983).

Houdeau, J. P.

R. Le Doucen, J. P. Houdeau, C. Cousin, V. Menoux, “Variable path-length, low temperature cells for absorption spectroscopy,” J. Phys. E18, in press (1985).

Husson, N.

N. Husson, A. Chedin, N. A. Scott, I. Cohen-Hallaleh, A. Berroir, “La banque de données Geisa,” Internal Reports 108 (1980) and 116 (1982), L.M.D., Ecole Polytechnique, Palaiseau, France.

Jones, G. D.

V. Malathy Devi, B. Fridovich, G. D. Jones, D. S. G. Snyder, “Diode laser measurements of strengths, half-widths and temperature dependence of half-widths for CO2 spectral lines near 4.2 μm,” J. Mol. Spectrosc. 105, 61 (1984).
[CrossRef]

Khodos, E. B.

M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the parameters of the vibrational rotational lines in the 9.4 and 10.4 μm bands of CO2 at different temperatures,” Opt. Spectrosc. 48, 408 (1980).

Lacome, N.

N. Lacome, A. Levy, G. I. Guelachvili, “Fourier Transform Measurement of Self-, N2-, and O2-Broadening of N2O Lines: Temperature Dependence of Linewidths,” Appl. Opt. 23, 425 (1984).
[CrossRef] [PubMed]

E. Arie, N. Lacome, C. Rossetti, “Etude expérimental et théorique des intensités et largeurs des raies de la transition 00°1 → (10°0, 02°0)I de CO2,” Can. J. Phys. 50, 1800 (1972).
[CrossRef]

Larvor, M.

Le Doucen, R.

R. Le Doucen, C. Cousin, V. Menoux, “Carbon furnace infrared source,” J. Phys. E 17, 1107 (1984).
[CrossRef]

R. Le Doucen, V. Menoux, M. Larvor, C. Haeusler, “Realisation d'un spectrometre infra-rouge de resolution moyenne, corrige de la coma,” Appl. Opt. 19, 3110 (1980).
[CrossRef]

R. Le Doucen, J. P. Houdeau, C. Cousin, V. Menoux, “Variable path-length, low temperature cells for absorption spectroscopy,” J. Phys. E18, in press (1985).

Levy, A.

Malathy Devi, V.

V. Malathy Devi, B. Fridovich, G. D. Jones, D. S. G. Snyder, “Diode laser measurements of strengths, half-widths and temperature dependence of half-widths for CO2 spectral lines near 4.2 μm,” J. Mol. Spectrosc. 105, 61 (1984).
[CrossRef]

Mantz, A. W.

R. S. Eng, A. W. Mantz, “Tunable diode laser spectroscopy of CO2 in the 10 to 15 μm spectral region lineshape and Q branch head absorption profile,” J. Mol. Spectrosc. 74, 331 (1979).
[CrossRef]

Margottin-Maclou, M.

A. Henry, M. Margottin-Maclou, A. Valentin, L. Henry, “Contribution à l'étude de l'absorption du CO2 et de N2O dans la region de 5μ,” Final Report, Contract CNRS-ATP Physique de l'Atmosphere (Aug.1983).

Menoux, V.

R. Le Doucen, C. Cousin, V. Menoux, “Carbon furnace infrared source,” J. Phys. E 17, 1107 (1984).
[CrossRef]

R. Le Doucen, V. Menoux, M. Larvor, C. Haeusler, “Realisation d'un spectrometre infra-rouge de resolution moyenne, corrige de la coma,” Appl. Opt. 19, 3110 (1980).
[CrossRef]

R. Le Doucen, J. P. Houdeau, C. Cousin, V. Menoux, “Variable path-length, low temperature cells for absorption spectroscopy,” J. Phys. E18, in press (1985).

Nicholls, R. W.

M. W. P. Cann, R. W. Nicholls, P. L. Roney, F. D. Findlay, A. Blanchard, “Spectral line profiles in the 4.3 μm band of CO2,” in Digest of Topical Meeting on Spectroscopy in Support of Atmospheric Measurements (Optical Society of America, Washington, D.C., 1980), paper WP16-1.

Park, J. H.

Patty, R. R.

Rinsland, C. P.

Robert, D.

D. Robert, J. Bonamy, “Short range force effects in semi classical molecular line broadening calculations,” J. Phys. 40, 923 (1979).
[CrossRef]

Robertson, D. C.

Roney, P. L.

M. W. P. Cann, R. W. Nicholls, P. L. Roney, F. D. Findlay, A. Blanchard, “Spectral line profiles in the 4.3 μm band of CO2,” in Digest of Topical Meeting on Spectroscopy in Support of Atmospheric Measurements (Optical Society of America, Washington, D.C., 1980), paper WP16-1.

Rossetti, C.

E. Arie, N. Lacome, C. Rossetti, “Etude expérimental et théorique des intensités et largeurs des raies de la transition 00°1 → (10°0, 02°0)I de CO2,” Can. J. Phys. 50, 1800 (1972).
[CrossRef]

Russel, J. M.

Sandford, B. P.

Scott, N. A.

N. Husson, A. Chedin, N. A. Scott, I. Cohen-Hallaleh, A. Berroir, “La banque de données Geisa,” Internal Reports 108 (1980) and 116 (1982), L.M.D., Ecole Polytechnique, Palaiseau, France.

Silverman, S.

B. H. Winters, S. Silverman, W. S. Benedict, “Line shape in the wing beyond the band head of the 4.3 μm band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 527 (1964).
[CrossRef]

Smith, G. R.

B. Fridovich, W. C. Braun, G. R. Smith, E. E. Champion, “Strengths of single lines in the 12C16O2ν3 band at 4.3 μm,” J. Mol. Spectrosc. 81, 248 (1980).
[CrossRef]

Smith, M. A. H.

Snyder, D. S. G.

V. Malathy Devi, B. Fridovich, G. D. Jones, D. S. G. Snyder, “Diode laser measurements of strengths, half-widths and temperature dependence of half-widths for CO2 spectral lines near 4.2 μm,” J. Mol. Spectrosc. 105, 61 (1984).
[CrossRef]

Tubbs, L. D.

Valentin, A.

A. Valentin, Thesis, Paris (1977).

A. Henry, M. Margottin-Maclou, A. Valentin, L. Henry, “Contribution à l'étude de l'absorption du CO2 et de N2O dans la region de 5μ,” Final Report, Contract CNRS-ATP Physique de l'Atmosphere (Aug.1983).

Williams, D.

Winters, B. H.

B. H. Winters, S. Silverman, W. S. Benedict, “Line shape in the wing beyond the band head of the 4.3 μm band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 527 (1964).
[CrossRef]

Adv. Chem. Phys.

G. Birnbaum, “Microwave pressure broadening and its application to intermolecular forces,” Adv. Chem. Phys. 12, 487 (1967).
[CrossRef]

Appl. Opt.

Can. J. Phys.

E. Arie, N. Lacome, C. Rossetti, “Etude expérimental et théorique des intensités et largeurs des raies de la transition 00°1 → (10°0, 02°0)I de CO2,” Can. J. Phys. 50, 1800 (1972).
[CrossRef]

J. Mol. Spectrosc.

R. S. Eng, A. W. Mantz, “Tunable diode laser spectroscopy of CO2 in the 10 to 15 μm spectral region lineshape and Q branch head absorption profile,” J. Mol. Spectrosc. 74, 331 (1979).
[CrossRef]

B. Fridovich, W. C. Braun, G. R. Smith, E. E. Champion, “Strengths of single lines in the 12C16O2ν3 band at 4.3 μm,” J. Mol. Spectrosc. 81, 248 (1980).
[CrossRef]

V. Malathy Devi, B. Fridovich, G. D. Jones, D. S. G. Snyder, “Diode laser measurements of strengths, half-widths and temperature dependence of half-widths for CO2 spectral lines near 4.2 μm,” J. Mol. Spectrosc. 105, 61 (1984).
[CrossRef]

J. Opt. Soc. Am.

J. Phys.

D. Robert, J. Bonamy, “Short range force effects in semi classical molecular line broadening calculations,” J. Phys. 40, 923 (1979).
[CrossRef]

J. Phys. E

R. Le Doucen, C. Cousin, V. Menoux, “Carbon furnace infrared source,” J. Phys. E 17, 1107 (1984).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

B. H. Winters, S. Silverman, W. S. Benedict, “Line shape in the wing beyond the band head of the 4.3 μm band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 527 (1964).
[CrossRef]

G. Birnbaum, “The shape of collision broadened lines from resonance to the far wings,” J. Quant. Spectrosc. Radiat. Transfer 21, 597 (1979).
[CrossRef]

R. L. Armstrong, “Moment analysis of a model correlation function,” J. Quant. Spectrosc. Radiat. Transfer 28, 197 (1982).
[CrossRef]

Opt. Spectrosc.

M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the parameters of the vibrational rotational lines in the 9.4 and 10.4 μm bands of CO2 at different temperatures,” Opt. Spectrosc. 48, 408 (1980).

Other

G. Birnbaum, “The Shape of Pressure Broadened Molecular Spectra in the Far Wings,” invited lecture, Seventh International Conference on Spectral Lineshapes, Aussois, FranceF. Rostas, Ed. (Meudon, 1985), to be published.

A. Henry, M. Margottin-Maclou, A. Valentin, L. Henry, “Contribution à l'étude de l'absorption du CO2 et de N2O dans la region de 5μ,” Final Report, Contract CNRS-ATP Physique de l'Atmosphere (Aug.1983).

V. Dana, 3rd cycle Thesis, Paris (1971).

R. Le Doucen, J. P. Houdeau, C. Cousin, V. Menoux, “Variable path-length, low temperature cells for absorption spectroscopy,” J. Phys. E18, in press (1985).

A. Valentin, Thesis, Paris (1977).

N. Husson, A. Chedin, N. A. Scott, I. Cohen-Hallaleh, A. Berroir, “La banque de données Geisa,” Internal Reports 108 (1980) and 116 (1982), L.M.D., Ecole Polytechnique, Palaiseau, France.

M. W. P. Cann, R. W. Nicholls, P. L. Roney, F. D. Findlay, A. Blanchard, “Spectral line profiles in the 4.3 μm band of CO2,” in Digest of Topical Meeting on Spectroscopy in Support of Atmospheric Measurements (Optical Society of America, Washington, D.C., 1980), paper WP16-1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic diagram apparatus (Rennes).

Fig. 2
Fig. 2

Typical record of a spectral curve (Rennes).

Fig. 3
Fig. 3

Typical record of a spectral curve (Paris).

Fig. 4
Fig. 4

Absorption coefficient α = 1 L log ( I 0 I t ) ( cm 1 )at 296 K plotted vs pressure P* squared (atm2) for various wave numbers. P*, equivalent pressure of CO2, accounts for the nonlinearity in the relationship between CO2 pressure and density.

Fig. 5
Fig. 5

Wave number dependence of the normalized absorption coefficient A0(σ,T), in cm−1 amagat−2, for two temperatures: 296 and 193 K.

Fig. 6
Fig. 6

Temperature dependence of the normalized absorption coefficient A0(σ,T), in cm−1 amagat−2, at various wave numbers (cm−1).

Fig. 7
Fig. 7

Comparison between this work and the Winters et al. results.2 δ = [ A 0 obs ( present work , σ ) A 0 obs ( Winters , σ ) ] / A 0 obs ( present work , σ ).

Fig. 8
Fig. 8

Comparison between various line shape correcting factors δ = ( A 0 obs A 0 calc ) / A 0 obs: +, Winters et al. χ factor, •, BGPB χ factor, ×, Cann et al. χ factor.

Fig. 9
Fig. 9

Comparison of experimental and calculated spectrum (A0 in cm−1 amagat−2) (a) T = 296 K, (b) T = 218 K: •, observed, -·-·-, Lorentz absorption, —, best fit obtained with the two-parameter line shape factor of Birnbaum [see Eq. (5)]. The optimized values of the parameters are given in Table IV.

Fig. 10
Fig. 10

Deviations of the calculated absorption coefficient from the experimental value: δ = ( A 0 obs A 0 calc ) / A 0 obs. The χ factors are the optimized ones given in Table V.

Fig. 11
Fig. 11

Optimized χ factors (see Table V).

Fig. 12
Fig. 12

Deviation δ of the calculated absorption coefficient from the experimental value, assuming a T-independent form factor (see text).

Fig. 13
Fig. 13

Temperature dependence of absorption at 2400 cm−1. (a) A 0 f i / A 0, relative contributions to the absorption coefficient evaluated at 2400 cm−1 vs J; -·-·-, D f i * T × D f i vs J [see Eq. (6)] assuming a χ shape factor independent of T; —, D f i * T × D f i vs J assuming a χ shape factor in 1/T. (b) Relative contribution of the ν3 band lines to the total derivative (dA0)/(dT) [see Eq. (6)]: -·-·-, product A 0 f i × D f i ( 10 3 cm 1 amagat 2 K 1 ) vs J assuming a T-independent shape factor; —, product A 0 f i × D f i ( 10 3 cm 1 amagat 2 K 1 ) vs J assuming a χ factor in 1/T.

Fig. 14
Fig. 14

Temperature dependence of absorption at 2600 cm−1. The symbols are the same as in Fig. 13.

Tables (5)

Tables Icon

Table I Observed Normalized Absorption Coefficient A0(σ,T) In cm−1 amagat−2 at Selected Temperatures

Tables Icon

Table II Observed and Calculated Streigths S11(296 K) [cm−2 atm−1 in Natural Abundance] for Some Lines In the ν3 Band of 12C16O2

Tables Icon

Table III CO2-Broadened Linewidths (10−3 cm−1 atm−1) and Temperature Coefficient n

Tables Icon

Table IV Optimized Parameters for the χB Factor Derived from the Birnbaum Model [see Eq. (5)]; Uncertainties are One Standard Deviation

Tables Icon

Table V Optimized χ Form Factors

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

α ( σ ) = f i S f i π γ f i γ f i 2 + ( σ σ f i ) 2 χ ( | σ σ f i | ) ,
α ( σ , P a , T ) 1 L log I 0 I t d a 2 A 0 ( σ , T ) ,
γ f i ( T ) = γ f i ( T 0 ) ( T 0 T ) n ,
± 5 % on the observed values of the absorption coefficients , ± 5 % on the line strengths , ± 5 % ( T 0 ) or ± 8 % ( T < T 0 ) on the linewidths ,
A 0 ( σ , T ) = f i σ σ f i S f i 0 γ f i 0 γ f i 02 + ( σ σ f i ) 2 χ ( | σ σ f i | , T ) f i A 0 f i ( σ , T ) ,
χ B ( σ , A , Δ 2 ) = A | σ Δ 2 | K 1 ( | σ Δ 2 | ) exp ( h c σ 2 k T ) ,
[ recall that z K 1 ( z ) z π z 2 exp ( | z | ) ] ,
d A 0 d T = f i A 0 f i ( σ , T ) [ 1 n T + 1 S f i 0 d S f i 0 d T + 1 χ ( | σ σ f i | ) d χ ( | σ σ f i | ) d T ] f i A 0 f i D f i .
α = 1 L log ( I 0 I t ) ( cm 1 )
0 | σ σ fi | 3 cm 1
3 | σ σ fi | 10
χ = 1.470 e | σ σ fi | 7.782
10 | σ σ fi | 120
χ = 0.535 e | σ σ fi | 36.535
| σ σ fi | 120
χ = 0.220 e | σ σ fi | 50.063
0 | σ σ fi | 3 cm 1
3 | σ σ fi | 10
10 | σ σ fi | 140
χ = 0.68 | σ σ fi | 28 K 1 ( | σ σ fi | 28 )
| σ σ fi | 140
χ = 0.345 e | σ σ fi | 43.448

Metrics